
Paris Carbone, Lars Kroll, Klas Segeljakt, Max Meldrum, Adam Hasselberg, Christian Schulte, Seif Haridi
<paris.carbone@ri.se>  <lkroll@kth.se>  <klasseg@kth.se>  <mmeldrum@kth.se>  <adamhas@kth.se>  <cschulte@kth.se>  <seif.haridi@ri.se>

Continuous Deep Analytics (CDA)

Sponsors Partners

Website: cda-group.github.io

The CDA Stack
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Looking for a MSc Thesis?

Data analytics pipelines build on diverse programming models with hard 
abstraction boundaries. In effect, performance suffers from context switching, 
steep data movement costs, and excessive type conversions.
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The Problem & Solution

A solution is to raise the level of abstraction by introducing an intermediate 
representation (IR). The IR is a programming language that is able to 
express and reason about each of the programming models unitedly.

The CDA stack builds on four open-source projects: 

• Core DSL - a frontend to the Arc IR, embedded in multiple host languages. 

• Arc - a programming language for expressing and optimising computations 
that combine data streams with relational and linear algebra. 

• Arcon - a distributed runtime which Arc runs on, implemented in Rust. 

• Kompact - an event-based component-actor middleware used by Arcon.
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The Arc
Intermediate Representation

|source:Stream[i32],  
evenSink:StreamAppender[i32], 
oddSink:StreamAppender[i32]| 
let mapped = result(for(source, 
    StreamAppender[i32], 

|out, v| merge(out, v + 5))); 
for(mapped, evenSink, |out, v| 

if(v % 2 == 0, merge(out, v), out)); 
for(mapped, oddSink, |out, v| 

if(v % 2 != 0, merge(out, v), out))

Generated Arc code
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The Mission

The ultimate goal of the CDA project is to create a next-gen Big Data platform 
that can support complex real-time decisions based on massive live data. 

• Dataflow optimizations
• Compiler optimizations
• Cross-domain optimizations

• Hardware acceleration
• Garbage-collection-free
• Long & short running tasks

• Edge & Cloud
• Elastic scaling
• Dynamic task execution
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