
Paris Carbone, Lars Kroll, Klas Segeljakt, Max Meldrum, Adam Hasselberg, Christian Schulte, Seif Haridi
<paris.carbone@ri.se> <lkroll@kth.se> <klasseg@kth.se> <mmeldrum@kth.se> <adamhas@kth.se> <cschulte@kth.se> <seif.haridi@ri.se>

Continuous Deep Analytics (CDA)

Sponsors Partners

Website: cda-group.github.io

The CDA Stack

Scan this:
or contact klasseg@kth.se

Looking for a MSc Thesis?

Data analytics pipelines build on diverse programming models with hard
abstraction boundaries. In effect, performance suffers from context switching,
steep data movement costs, and excessive type conversions.

Stream
Task

Graph
Task

Tensor
Task

λ1 λ2 λ3

λ1 λ2 λ3IR IR IR

λ1 + λ2 + λ3IR

The Problem & Solution

A solution is to raise the level of abstraction by introducing an intermediate
representation (IR). The IR is a programming language that is able to
express and reason about each of the programming models unitedly.

The CDA stack builds on four open-source projects:

• Core DSL - a frontend to the Arc IR, embedded in multiple host languages.

• Arc - a programming language for expressing and optimising computations
that combine data streams with relational and linear algebra.

• Arcon - a distributed runtime which Arc runs on, implemented in Rust.

• Kompact - an event-based component-actor middleware used by Arcon.

Performance

v + 3

v + 1 + 1 + 1

v + 1 v + 1 v + 1

v + 1 v + 1 v + 1

1. Unoptimised

2. Fused

4. Partially Evaluated

3. Inlined

(Task with function)

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

None
Task(Flink)
Invocation
Instruction

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

None
Task(Flink)
Invocation
Instruction

100

101

102

103

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

None
Task(Flink)
Invocation
Instruction

x2 orders of
magnitude

faster when
optimized

1. Unoptimised

4. Partially Evaluated

2. Fused
3. Inlined

10M elements
mapped 50 times
on Apache Flink

The Arc
Intermediate Representation

|source:Stream[i32],
evenSink:StreamAppender[i32],
oddSink:StreamAppender[i32]|
let mapped = result(for(source,
 StreamAppender[i32],

|out, v| merge(out, v + 5)));
for(mapped, evenSink, |out, v|

if(v % 2 == 0, merge(out, v), out));
for(mapped, oddSink, |out, v|

if(v % 2 != 0, merge(out, v), out))

Generated Arc code

source
evenSink

oddSink
v + 5

v%2==0?

v%2!=0?

The Mission

The ultimate goal of the CDA project is to create a next-gen Big Data platform
that can support complex real-time decisions based on massive live data.

• Dataflow optimizations
• Compiler optimizations
• Cross-domain optimizations

• Hardware acceleration
• Garbage-collection-free
• Long & short running tasks

• Edge & Cloud
• Elastic scaling
• Dynamic task execution

Dataflow IR

Arcon runner

Arc IR

Execution

Compilation

Rust Code Generation

Arc Code Generation

Data
Streams

Linear
Algebra

Relational
Algebra

σθ

σθ
π ⋈

Core
DSL

Deployment

Real-time
Decision
Making

Analytics

Knowledge
∞

Data

Kompact +

