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ABSTRACT
Stream processing has been an active research field for more
than 20 years, but it is now witnessing its prime time due
to recent successful efforts by the research community and
numerous worldwide open-source communities. The goal of
this tutorial is threefold. First, we aim to review and high-
light noteworthy past research findings, which were largely
ignored until very recently. Second, we intend to underline
the differences between early (’00-’10) and modern (’11-’18)
streaming systems, and how those systems have evolved
through the years. Most importantly, we wish to turn the
attention of the database community to recent trends: stream-
ing systems are no longer used only for classic stream pro-
cessing workloads, namely window aggregates and joins.
Instead, modern streaming systems are being increasingly
used to deploy general event-driven applications in a scal-
able fashion, challenging the design decisions, architecture
and intended use of existing stream processing systems.
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1 INTRODUCTION
During the last 10 years, applications of stream processing
technology have gone through a resurgence, penetrating
multiple and very diverse industries. Nowadays, virtually all
Cloud vendors offer first-class support for deploying man-
aged stream processing pipelines, while streaming systems
are used in a variety of use-cases that go beyond the clas-
sic streaming analytics (windows, aggregates, joins, etc.).
For instance, web companies are using stream processing
for dynamic car-trip pricing, banks apply it for credit card
fraud detection, while traditional industries apply streaming
technology for real-time harvesting analytics.
As seen in Figure 1, during the last 20 years, streaming

technology has evolved significantly, under the influence of
database and distributed systems. The notion of streaming
queries was first introduced in 1992 by the Tapestry sys-
tem [47], and was followed by lots of research on stream
processing in the early 00s. Fundamental concepts and ideas
originated in the database community andwere implemented
in prototypical systems such as TelegraphCQ [20], Stanford’s
STREAM, NiagaraCQ [21], Auroral/Borealis [1], and Gigas-
cope [22]. Although these prototypes roughly agreed on the
data model, they differed considerably on querying seman-
tics [5, 13]. This research period also introduced various sys-
tems challenges such as sliding window aggregation [6, 36],
fault-tolerance and high-availability [8, 44], as well as load
balancing and shedding [46]. This first wave of research was
highly influential to commercial stream processing systems
that were developed in the following years (roughly during
2004 – 2010), such as IBM System S, Esper, Oracle CQL/CEP
and TIBCO. These systems focused – for the most part –
on streaming window queries and Complex Event Process-
ing (CEP). This era of systems was mainly characterized by
scale-up architectures processing ordered event streams.

The last reincarnation of streaming systems has come as a
result of stream processing research that started roughly after
the introduction of MapReduce [23] and the popularization
of Cloud Computing. The focus shifted towards distributed,
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Figure 1: An overview of the evolution of stream processing and respective domains of focus.

data-parallel processing engines and shared-nothing archi-
tectures on commodity hardware. Lacking well-defined se-
mantics and a proper query language, systems like Millwheel
[3], Storm, Spark Streaming [50], and Apache Flink [16] first
exposed primitives for expressing streaming computations
as hard-coded dataflow graphs and transparently handled
data-parallel execution on distributed clusters. With very
high influence, the Google Dataflow model [4] re-introduced
older ideas such as out-of-order processing [37] and punc-
tuations [49] proposing a unified parallel processing model
for streaming and batch computations. Stream processors
of this era are converging towards fault-tolerant, scale-out
processing of massive out-of-order streams.
At the moment of writing we are witnessing a trend to-

wards using stream processors to build more general event-
driven architectures [34], large-scale continuous ETL and
analytics, and even microservices [33]. These use-cases have
led to application designs where the stream processor’s state
has become a first-class citizen, visible to programmers [15]
but also to external systems.

We believe that this is the right moment to reflect on the
similarities and differences between the two eras of stream-
ing research and to assemble lessons learned. Moreover,
we wish for this tutorial to bring forward important, but
overlooked works that have played a vital role in today’s
streaming systems design. Finally, we aim to establish a com-
mon nomenclature for concepts which various open-source
projects and commercial offerings are misusing.

1.1 Tutorial Outline
We will split this tutorial in three parts.
1. Review of stream processing foundations. This intro-
ductory part covers fundamentals of stream processing com-
putation and system design. Specifically, we will cover lan-
guages and semantics, notions of time, out-of-order handling,
and progress mechanisms.
2. Evolution of system aspects. The second part discusses
the evolution of streaming system aspects. In particular, we

will review state management practices, fault recovery, high
availability and load management techniques.
3. Emerging applications & new requirements. In the
third part, we describe the characteristics and requirements
of emerging streaming applications, focusing on real-time
training and serving ofMLmodels, event-driven applications,
and microservice pipelines. We then propose future research
directions.

1.2 Practical information

Scope. This survey tutorial provides an overview of the two
eras of research in stream processing, highlighting impact-
ful work that has shaped modern streaming systems. We
then discuss emerging applications, new requirements, and
challenges to be addressed by the research community.
Prior tutorials. The material proposed in this tutorial has
not been presented before. Prior tutorials have either focused
on a specific area (e.g., streaming optimizations [43]) or on
the broader area of event processing [24]. To the best of
our knowledge, the tutorial closest to ours was presented at
DEBS 2014 [28] and covered Cloud Computing aspects of
stream processing. Since then, modern streaming systems
and applications have matured enough to allow for a deeper
retrospective analysis and comparison.
Duration & target audience. The tutorial will last three (3)
hours. Our target audience is graduate students, researchers,
and practitioners from industry, who would benefit from a
broader perspective of the evolution of stream processing. No
prior knowledge of stream processing concepts is required
as a prerequisite for attendance.

2 REVIEW OF FOUNDATIONS
The first part of our tutorial will be used to establish a com-
mon understanding of the basic notions of query languages,
the effect of event ordering, as well as the time dimensions
of streams. Finally, we will present various definitions of
processing-progress in (dis)ordered streams.
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2.1 Languages and Semantics
Streaming query languages have been a subject of research
since the very first days of stream processing. Virtually every
attempt to create a standard language for streams has been
an extension of SQL, by adding windowing and means to
convert from streams to relations and vice versa. Most note-
worthy examples were CQL [5] and its derivatives [10, 31].
Later, dozens of works tried to extend the same standard for
niche use-cases, with custom window types and aggregates;
none of those attempts made it to standards.
Under the influence of MapReduce-like APIs, the major-

ity of open-source streaming systems implemented func-
tional/fluent APIs embedded in general purpose program-
ming languages to hardcode Aurora-like dataflows. Till today,
various communities are working on establishing a language
for expressing computations which combine streams and
relational tables, without a clear consensus.

2.2 Time and Order
Time and order lie at the heart of unbounded data processing.
Due to stochastic factors like network latency and opera-
tions like shuffling and partitioning, data often arrives at a
streaming system out of order. Besides the causes and effects
of out-of-orderness, the tutorial will examine the two funda-
mental strategies for processing out-of-order data. The first
buffers data at the ingestion point and allows batches of data
to proceed in order [3, 37, 45, 49]. The second, ingests out-
of-order data as they arrive and adjusts the computations in
face of late data [9, 41].

2.3 Tracking Processing Progress
Streaming systems need a way to track processing progress,
i.e., how far along a stream has been processed. Progress
tracking is required for triggers, windowing and state purg-
ing. Multiple measures have been devised to track progress.
Thesemeasures are: punctuations [49], watermarks [4], heart-
beats [45], slack [1], and frontiers [40]. In the tutorial we will
compare and contrast these mechanisms with examples.

3 EVOLUTION OF SYSTEM ASPECTS
Although the foundations of stream processing have re-
mained largely unchanged over the years, important system
aspects have transformed streaming systems into sophisti-
cated and scalable engines, producing correct results in the
presence of failures.

3.1 State Management
State is a concept that has always been central to stream
processing. The notion of state itself has been addressed
with many names in the past, such as “summary”, “synopsis”,
“sketch” or “partitioned state”, and that reflects aspects of the

evolution of data stream management over time. For exam-
ple, several early systems adopted a bounded memory model
for predefined stream operations such as window aggregates
and joins with actual state being a best-effort, approximate
summarization of necessary stream statistics for the oper-
ation at hand. In other cases, underlying stream runtimes
had been oblivious of data structures and variables defined
within the user scope of a stream application, leaving every
challenge related to state management to the programmer.
The need for explicit state management originates from

the need to keep and automate the maintenance of persistent
state for event-driven applications in a reliable manner. That
includes the ability to store state beyond main memory, offer
transactional processing guarantees, and allow for system
reconfiguration [15, 17, 29]. Such requirements made it nec-
essary to design systems fully aware of stream state and
capable of managing all associated operations transparently.

During our tutorial we are going to spend a considerable
amount of time explaining the challenges related to parti-
tioned state and processing guarantees, highlighting their
impact to system design. We will further classify approaches
into two broad directions: (i) internally- [15, 17, 42] and (ii)
externally-managed state [3, 18, 38], encapsulating whether
state is managed within or outside a stream processor. We
will discuss related aspects and technologies such as file
systems, log-structured merge trees and related data struc-
tures, state expiration policies, window state maintenance,
checkpoints, lineage-based approaches [50] and partitioning
schemes for maintaining state.

3.2 Fault Recovery and High Availability
Fault recovery and high availability (HA) have been pri-
mary concerns for stream processing systems [30]. Apart
from maintaining guarantees upon partial failures, stream
processors also aim for low-latency executions. Therefore,
recovery and HA mechanisms have to be non-obstructive to
the stream execution at hand.
We will review the evolution of two common HA tech-

niques: active and passive standby. An active standby runs
two identical processing task instances in parallel and switches
to the secondary instance when a fault occurs in the pri-
mary. This approach secures the highest level of availability
and is the preferred option for critical applications. In con-
trast, a passive standby instantiates a new instance of a failed
operator on idle resources, such as a provisioned virtual
machine [15, 17]. Passive standby has gained traction re-
cently with the scale-out capacity of streaming systems. The
modern version of passive standby entails transferring the
computation code and the latest checkpointed state snap-
shot of a failed operator instance to an available compute
node, such as a virtual machine or a container, and resuming
operation from the latest checkpoint.
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3.3 Elasticity and Load Management
Due to the push-based nature of streaming inputs from exter-
nal data sources, input rates might exceed system capacity
causing performance degradation and increased latency. To
counter this situation stream processing systems employ
load management techniques. This is an area where the old
and new systems contrast very vividly.
Early on, systems used load shedding techniques to ad-

dress excess traffic by dynamically dropping tuples. The load
shedder system is expected to be capable of deciding when,
where (in the query plan), how many, and which tuples to
drop so that (i) latency improves to an acceptable level and
(ii) results quality degrades only minimally. In contrast, mod-
ern stream processing systems rely on managed partitioned
state and the resource abundance of the Cloud and respond
to workload variation via elasticity [17, 26, 32]. Elastic stream
processors continuously monitor application performance
and perform scale-out or scale-in actions of individual op-
erators, ensuring correct migration of state partitions. In
situations where input sources can control the data produc-
tion rate, streaming systems can also utilize backpressure to
inform the input sources to slow down.

4 PROSPECTS
Since its very beginning, stream processing has been con-
ceived as a means of querying unbounded data sources in
a relational fashion. The early systems and languages were
designed as extensions of relational execution engines, with
the addition of windows. As reflected by the current commer-
cial stream processor offerings, traditional applications have
been, for the most part, streaming analytical queries and CEP.
Current streaming systems have evolved in the way they
reason about completeness and ordering (e.g., out-of-order
computation) and have witnessed architectural paradigm
shifts that constituted the foundations of processing guaran-
tees, reconfiguration, and state management. In this part of
the tutorial, we summarize such observations from both ap-
plication and system emerging needs. We then discuss how
these new requirements can shape key characteristics of
the future generation of data stream technology and outline
open problems towards that direction.

4.1 Emerging Applications

Cloud Applications. At the moment of writing, we ob-
serve an interesting split in the design of modern Cloud
programming frameworks. On one side of the spectrum, we
witness stream processing APIs being implemented on top
of Actor-like programming models – examples of this is Or-
leans [11, 14] and Akka Streams, as well as the streaming API
of the Ray project [39]. On the other side of the spectrum we
see stream processing technology being used as a backend

for Actor-like abstractions such as Stateful Functions1[2]
tailored for Cloud deployment. These two paradigms (Actors
on streams vs. streams on Actors) signify that the stream-
ing and Actor programming paradigms and their associated
system implementations might be converging, as a result of
technology maturation and application requirements. We
believe that stream processors can become full-fledged sys-
tems for backing Cloud services such as Virtual Actors [11]
and Microservices [27, 33], capable of executing transactions,
performing analytics, and embedding complex business logic
of stateful services inside dataflow operators.
Machine Learning. At the moment of writing, ML mod-
els are typically trained offline and a stream processor is
used for model serving. Alternatively, the stream proces-
sor runtime is used for data distribution and coordination
but complex operations, such as training and inference, are
still mainly performed by specialized libraries. Thus, oper-
ators need to issue RPC calls to external ML frameworks
and model servers adding both latency and complexity to
the pipeline. Moreover, ML models need to be continuously
updated, and oftentimes trained within the same pipeline
as model serving. This means that the stream processor can
cover the needs for online training, by offering constructs
such as iterations, dynamic tasks, and shared state.
Streaming Graphs. Another emerging application area is
continuous analysis of graph streams, where events indicate
edge and vertex additions, deletions, and modifications. Even
though there exist many specialized systems for dynamic
graph processing [12], modern stream processors do not in-
herently support graph streaming use-cases. A prominent
use-case is traffic and demand prediction for ride sharing
services. Such an application needs to continuously compute
shortest path queries with low latency and solve challenging
online graph learning problems at the same time. It needs to
simultaneously learn from, and analyze evolving graph in-
puts and other structured or unstructured types of static and
dynamic data, such as driver and user locations, rush hours
per area, neighborhood and points of interest (theaters, sta-
diums, etc.). The prediction tasks require generating graph
embeddings using streaming random walks or online neural
network training. Another use-case is online network man-
agement in SDN controllers, where real-time events update
the network topology and controllers execute continuous
routing decisions, evaluate verification tasks, and find backup
paths for each link in a streaming fashion.

4.2 The road ahead
Several aspects of streaming systems could evolve further by
exploiting next-generation hardware and incorporating ideas

1http://statefun.io
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Table 1: Requirements for new applications

from programming languages, domain specific models, and
distributed computing. During the tutorial we will discuss
the following requirements that stem from new applications.

Programming Models. Modern streaming systems allow
developers to author streaming topologies with user-defined
functions and functional APIs [7, 16] or some variant of
streaming SQL [10]. However, these make the development
of event-driven, Cloud applications very cumbersome. In
fact, developers can only develop Cloud apps in a very low-
level dataflow API. To build loosely-coupled Cloud apps, we
need novel APIs that will allow developers to author simple
high-level functions [2] or actor-like APIs [14, 39] that can
be compiled into streaming dataflows. Machine Learning and
graph processing workloads require programming models
and abstractions that allow for iterations and complex data
types (e.g., matrices, graphs), instead of tuple-like events.

Transactions. Streaming systems lack transactional facili-
ties to support advanced business logic and coordination as
required by Cloud applications with the exception of S-Store
[38], which provides ACID guarantees on shared mutable
state on a single machine. Cloud applications feature many
use-cases that span across components/services in a typi-
cally distributed environment. Coordination of the compo-
nents’ processing is essential to safeguard state consistency
and provide a single success or fail response that mirrors
the successful recording of all state changes or none at all.
Applications require support by programming frameworks
for expressing transaction workflows that involve multiple
components and for handling transaction abort cases and
rollback actions in an automated manner.

Advanced State Backends. A popular choice for a state
backend in streaming systems is a key-value store [15, 19].
However, Cloud apps as well as machine learning and graph
processing applications may require more sophisticated state

such as dense matrices, large relational tables or an object-
based blob storage. Despite the chosen datamodel, persistently-
backed state may need to be indexed and cached for fast
access (think of product images qualified by a product id),
support transactions including the possibility of a rollback
(e.g., for online payments), or process complex analytical
queries (e.g. on top of a Cloud data warehouse). Applications
need a way to provide system-wide guarantees across the
potentially disparate backends that comprise its overall state
such as fault tolerance with strict consistency.

Loops & Cycles.Most dataflow systems today limit compu-
tation primarily in DAGs due to limitations in flow control
(deadlock elimination) and monotonic event-time progress
estimation. Nevertheless, there is a critical need for loops,
either in the form of asynchronous event feedback or syn-
chronously using bulk iterative semantics (Bulk and Stale
Synchronous model variants). Asynchronous loops can en-
able request and response logic to support Cloud apps that
demand two-way message exchange across functions (e.g.,
serverless) or actors or other more sophisticated mechanisms
on dataflow tasks such as concurrency control for transac-
tion lifecycles. Synchronous loops are paramount for bulk
iterative algorithms used in machine learning (e.g., Stochas-
tic Gradient Descent) and are also critical for graph analytics
that rely on iterative superstep synchronization to ensure
consistent results. Therefore, the ability to express and exe-
cute different forms of loops will enable in the future a large
set of computational models to be subsumed by stream pro-
cessors. Despite existing efforts such as the Timely Dataflow
model implemented in Naiad [40], there is still a need for
intuitive and compositional integration of loops in exist-
ing systems at the programming model to allow users to
express iterative operations while inter-playing seamlessly
with event-time out-of-order processing [37].

Elasticity & Reconfiguration. Streaming systems provide
limited means for elasticity and reconfiguration actions, such
as changing resource allocations and updating operator logic
amidst a job execution. Typically a stream processing job has
to save its state, terminate its execution, and restart it with
the refreshed operators. For Cloud applications that have
to be constantly online, this support is inadequate. Instead,
applications need to apply code updates and hot fixes seam-
lessly to their operation without affecting the state or the
processing of user requests.

Dynamic Topologies. The conventional means of express-
ing and executing dataflow streaming applications as stati-
cally compiled and scheduled graphs has been a limiting fac-
tor in both expressibility and performance for several types
of computations. Many Cloud apps are dynamic by nature, re-
quiring new instances of service components to be spawned
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on demand and execute their event-based logic indepen-
dently from the “main” dataflow. Likewise, ML pipelines such
as those seen in reinforcement learning are built around the
notion of expanding computation dynamically during model
exploration [39]. The ability to compose dataflow topologies
dynamically beyond static stream tasks can aid such applica-
tion domains and also offer new performance capabilities to
existing streaming use-cases such as work-stealing, parallel-
recovery, skew mitigation and parallel execution of global
aggregates (e.g., global windows) on demand.

SharedMutable State.A large set of applications from com-
putational fields such as simulations, ML task-driven model
training, and graph aggregations rely on the availability of
shared mutable state, i.e., shared variables where multiple
tasks can read and write. While this approach appears uncon-
ventional and challenging to integrate in purely-data parallel
streaming systems, it carries great potential towards support-
ing non key-parallel modes of operation, model optimization
algorithms and more complex data types.

Queryable State. Stream processing applications build and
enrich persistent large state that represents dynamic rela-
tional tables, ML feature matrices or other types of derivative
results from pre-processed and joined data from multiple
input streams. While the standard interaction point with
a stream processor has always been its input and output
streams, internal state, currently a black box to the user, is
becoming the main point of interest for many interactive
and reactive data applications today. A step towards better
reuse of computation is to allow dataflow applications to
subscribe and gain read access to intermediate views of their
respective states. This capability can further boost better
interoperability across different Cloud apps and their inter-
nal components (e.g., stateful functions) as well as training
and serving logic in ML. Related challenges in that direc-
tion include external query access isolation (e.g., snapshot)
and flexible state management, which have only been par-
tially considered in existing solutions (S-Store [38], Flink
point-queries [15]).

State Versioning. Streaming systems provide no explicit
support for state versioning and state schema evolution. For
Cloud and machine learning applications however, mutating
the state schema is part of their lifecycle. Cloud applications
change frequently, e.g., to introduce new services or update
the current ones. As their state schema evolves, applications
need a reliable way to version their state in order to continue
operating consistently. Machine Learning applications also
require state versioning. For instance, consider a continuous
model serving pipeline (e.g., fraud detection) where a ML
model needs to be updated while the pipeline is running.

Hardware Acceleration. Hardware accelerators such as
GPUs, TPUs, and FPGAs have become mainstream for cer-
tain ML workloads, especially when tensor computation is
involved. While hardware acceleration has never really been
a hard requirement for data streaming it starts to become
more relevant, given the broadening capabilities of stream
processors (e.g., Stream ML). Recent findings [35, 51] have
shown that stream-native operations (e.g., window aggre-
gation) can also benefit from hardware accelerators such
GPUs and Cloud FPGAs [48]. Overall, there is potential for
more specialized code generation targeting diverse hardware
architectures and general-purpose stream operators in the
future [51]. Furthermore, apart from speedups, modern hard-
ware can also lead to new capabilities in stream processing
that were not previously considered possible. For example,
new storage and network hardware can enable novel fault
tolerance and state management mechanisms. Managed state
currently resides mostly in volatile memory and can be lost
upon failure. The potential adoption of NVRAM and RDMA
within compute clusters could shift current approaches from
fail-stop to efficient fault-recovery models [17, 25].
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