Arcon: Continuous and Deep Data Stream Analytics

Max Meldrum Klas Segeljakt Lars Kroll
RISE SICS KTH Royal Institute of Technology KTH Royal Institute of Technology
Stockholm, Sweden Stockholm, Sweden Stockholm, Sweden
max.meldrum@ri.se klasseg@kth.se lIkroll@kth.se
Paris Carbone Christian Schulte Seif Haridi*

RISE SICS
Stockholm, Sweden
paris.carbone@ri.se

ABSTRACT

Contemporary end-to-end data pipelines need to combine many
diverse workloads such as machine learning, relational operations,
stream dataflows, tensor transformations, and graphs. For each
of these workload types, there exists several frontends (e.g., SQL,
Beam, Keras) based on different programming languages as well
as different runtimes (e.g., Spark, Flink, Tensorflow) that optimize
for a particular frontend and possibly a hardware architecture (e.g.,
GPUs). The resulting pipelines suffer in terms of complexity and
performance due to excessive type conversions, materialization of
intermediate results, and lack of cross-framework optimizations.
Arcon aims to provide a unified approach to declare and execute
tasks across frontend-boundaries as well as enabling their seamless
integration with event-driven services at scale. In this demonstra-
tion, we present Arcon and through a series of use-case scenarios
demonstrate that its execution model is powerful enough to cover
existing as well as upcoming real-time computations for analytics
and application-specific needs.

CCS CONCEPTS

« Information systems — Data streams; » Software and its
engineering — Data flow languages.

ACM Reference Format:

Max Meldrum, Klas Segeljakt, Lars Kroll, Paris Carbone, Christian Schulte,
and Seif Haridi. 2019. Arcon: Continuous and Deep Data Stream Analytics.
In Real-Time Business Intelligence and Analytics (BIRTE 2019), August 26,
2019, Los Angeles, CA, USA. ACM, New York, NY, USA, 3 pages. https:
//doi.org/10.1145/3350489.3350492

1 INTRODUCTION

A wide variety of scalable data processing frameworks are available
today, each tailored to a certain type of computation and mani-
fested in a supported frontend. Examples are Spark focusing on

*Also with RISE SICS.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

BIRTE 2019, August 26, 2019, Los Angeles, CA, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7660-0/19/08.

https://doi.org/10.1145/3350489.3350492

KTH Royal Institute of Technology
Stockholm, Sweden
cschulte@kth.se

KTH Royal Institute of Technology
Stockholm, Sweden
haridi@kth.se

DataFrame/Relational operations, Flink [2] adopting the Beam win-
dowing model [1], TensorFlow for programming with Tensors etc.
In practice, complete data pipelines typically involve more than a
single framework. If we take a typical ML pipeline as an example
there is a need to apply feature generation, model training, and
serve these models right away within a live event-based application.
Combining multiple frameworks in an application can lead to com-
plexities and performance penalties such as mismatch of processing
guarantees, hardware under-utilization, and high latency from re-
materialization across frameworks. Furthermore, no user-facing
programming model subsumes the others while no existing runtime
has the capabilities to execute fundamentally different workloads
(e.g., dataflow tasks and dynamically scheduled computation).

Arcon is an open-source system that aims to tackle this problem
at both of its ends, by providing (1) Arc: a common intermedi-
ate representation (IR) to declare data-driven computation, and
(2) Arcon Runtime: a general-purpose distributed runtime to exe-
cute programs compiled and optimized through Arc. Through this
unique set of common features Arcon allows users to capture and
execute a diverse range of computations such as live graph min-
ing, training and serving machine learning models, and declaring
stream window aggregates within a single application.

The Arcon runtime combines two distinct execution models into
one: the long-running dataflow model seen in stream processing
specializing on continuous, uninterrupted processing and the dy-
namic task scheduling model seen in batch processing systems
which further specialize on deeper analytics. This demonstration
showcases the seamless integration of both of these execution mod-
els within emerging application domains such as online business
analytics and dynamic actor-based applications.

Demo Outline. We will cover (1) the internals of Arcon from
its overall design and compilation down to its execution model,
covering the main components of Arcon - its Arc compiler and
the compilation phases that lead to code generation, as well as
the Arcon runtime that deploys and executes the generated code
fragments at scale — (2) we then provide a step-by-step examination
of application use-cases that highlight Arcon’s main features, in
which we present and execute a set of distinct programs that make
use of different existing frontends.

2 SYSTEM OVERVIEW

The main components of the Arcon system are the Arc program
compiler and the Arcon runtime, as depicted in Fig.1. Arcon allows

https://doi.org/10.1145/3350489.3350492
https://doi.org/10.1145/3350489.3350492
https://doi.org/10.1145/3350489.3350492

BIRTE 2019, August 26, 2019, Los Angeles, CA, USA

Arc IR / Compiler

Figure 1: System Overview

existing and future frontends to be supported seamlessly by adding
a direct translation of their operations to Arc. In this section, we pro-
vide a design overview of Arc and Arcon’s runtime, while focusing
on the respective characteristics of the demonstrated system.

2.1 The Arc Intermediate Language

The Arc IR [3] is an extension of the Weld IR [4], bringing the
ability to express continuous and scalable computations on streams
and windows. Weld is a language for describing transformations
on bounded size datasets, and was designed to improve the perfor-
mance of data analysis applications which depend on numerous
libraries. By nature, libraries are optimized internally, but typically
not with respect to each other. In consequence, expensive data
movement costs may arise when functions of different libraries are
pipelined, as intermediate results may need to be eagerly material-
ized. Weld addresses this issue by acting as a common translation
layer for different computations. Weld’s programming model builds
on monadic comprehensions, enabling data parallelism, while ab-
stracting over hardware. Data types in Weld are categorized as
either value- or builder-types. The former are read-only data types,
which can either be scalars or collections, and the latter are write-
only data types, equivalent to additive monads.

Whereas Weld’s builders are used to create values, the builders
that Arc adds are used to construct stream processing pipelines
of operators, with sources and sinks, connected by channels. Arc
introduces streams and stream builders as new data types, and addi-
tionally supports windowed streams through higher-order builders
referred to as windowers. As Arc retains the full expressiveness
of Weld, developers will be able to harness the strengths of both
stream and batch processing in the same application, enabling both
continuous and deep analytics.

2.2 The Arcon Runtime

Arcon’s distributed runtime is designed to reflect a clear separation
of concerns between high performance and operability. At one end,
it is meant to exploit special hardware as well as low-level system
and network optimizations to execute the application critical path
efficiently and reliably. Whereas, at the same time it has to integrate
well with the existing cloud computing ecosystem (e.g., resource
managers, schedulers, data stores etc.) for its non-performance-
critical operational needs. For these reasons Arcon is divided into
Execution and Operational planes, to achieve a suitable degree of
synergy and independence between these two requirements. In
Fig.2, we depict a physical deployment model of the runtime, the
internals of which we summarize in the rest of this section.

Max Meldrum, Klas Segeljakt, Lars Kroll, Paris Carbone, Christian Schulte, and Seif Haridi

Q
=
Statemaster Appmaster [
©
control data dataflow =~ S
snapshots deployment -~ ®
- 3
- - 8
4
£ 2
o K
H o
T g
10 - Channels / State 10 - Channels / State ‘§
Dynamic Scheduler Dynamic Scheduler E

Figure 2: Runtime Overview

2.2.1 The Operational Plane. The operational plane is responsible
for coordinating the distributed execution of an application includ-
ing task deployment, monitoring, and state management. This part
of the system is built in Scala Akka to acquire interoperability with
existing tools and data processing libraries (e.g., YARN, HDFS) and a
mature actor programming model to implement crucial operational
services such as state management and job monitoring.

2.2.2 The Execution Plane. The Execution plane of Arcon provides
a high-performance computation environment that is available
locally to each operator. This includes support for all critical aux-
iliary mechanisms (e.g., multiplexed network IO, local state, and
dynamic task scheduling). It is, in essence, a set of system libraries
which ensure that all time-critical operations are performed with-
out unnecessary delays. For that reason, we have implemented
these libraries using a specialized middleware to execute program
fragments written entirely in Rust for high performance, memory
safety, and no garbage collection. As shown in Fig.2 each worker
supports the execution of both long-running streaming tasks and
short-running dynamic tasks. Short-running tasks are supported
via dynamic scheduling and essentially offer the capability to sup-
port applications that involve intermittent batch computation (e.g.,
Reinforcement Learning) or “preempt” computation within stream
dataflow graphs which are otherwise static. This can be further used
to offload the critical path of a continuous application from time-
consuming work such as performing external IO or computationally
intensive computation (i.e. iterative computation, simulations).

3 SYSTEM DEMONSTRATION

Our demonstration focuses primarily on how problems from differ-
ent application domains can be abstracted over and handled by a
single runtime system. Onlookers should be able to follow the path
from a domain specific problem description to how it is executed
on a general purpose distributed processing infrastructure.

3.1 Demonstration Flow

During the system demonstration we will show a number of use-
case scenarios that highlight Arcon’s capabilities. Through Fig. 3,
4, and 5, we showcase the general demonstration flow that we will
follow throughout each of these scenarios. Every scenario will be-
gin by describing a high-level domain specific description of the
problem in a common data science language like Python and Scala.
Based on this, we will describe the Arc IR that implements this
code in a domain independent manner that is understood by Arcon.

Arcon: Continuous and Deep Data Stream Analytics

import arc_beam as beam
import arc_beam.transforms.window as window
import weld_pandas as pd

def normalize(data):
s = pd.Series(data)
return s / s.sum()

p = beam.Pipeline(...)
(p | 'source' >> beam.io.ReadFromPubSub(Kafka(..))
.with_output_types(int)
| 'filter' >> beam.Filter(lambda x: x > 0)
| "window' >> beam.WindowInto(window.FixedWindows(60))
| 'map’ >> beam.Map(normalize)
| 'sink' >> beam.io.WriteToSink(Kafka(..)))
p.run()

Figure 3: Example Application using Beam & Pandas

Going further, we will demonstrate how this logical representa-
tion is converted into a deployment-ready dataflow graph, that we
then execute on our runtime. While the application is running, we
will describe the system’s internals using the dataflow graph and
elaborate on how different parts of the system interact. Finally, we
will show the results of the execution, in some manner that is easy
to follow for the onlookers. Fig. 3 highlights an application which
combines Beam and Pandas. Beam constructs a pipeline of opera-
tors, reading input as a stream of integers from a Kafka source, and
writing output to a Kafka sink. The intermediate processing steps
involve filtering out negative integers, and creating a tumbling,
one-minute long, window. Each window outputs a vector of its
elements in a normalized form. The generated Arc IR and runtime
deployment graph are illustrated in Fig. 4, and Fig. 5 respectively.

3.2 Application Domains

We will use the same demonstration flow to showcase a number of
pipelines that currently suffer from the absence of either a cross-
framework SDK integration or a common runtime. For that purpose
we choose the application domains of “Online Analytics” and “Actor-
Based Services”.

Online Business Analytics: Business analytics are becoming in-
creasingly important for day-to-day decision making rather than
yearly or monthly retrospective reports. While the “online” aspect
is inherently important for decision making, several stages within
business analytics pipelines today are complex and require days
of data reconciliation due to the combination of technologies in-
volved. For example, if the business analytics models make use of
a graph representation, underlying tasks can either perform deep
analysis on graph snapshots (e.g., identifying the graph backbone
using a system like Giraph) or incremental/approximate analysis
on dynamic graphs (e.g., vertex counts, triangle counts, etc.). Nev-
ertheless, since different runtimes are involved (e.g., a batch and
a stream processing framework respectively) no data or computa-
tion sharing is possible in the overall process. Thus, a backbone
identification algorithm could not make use of the “running” set of
triangles in a dynamically updating graph. Machine Learning tasks
are also known for the diversity of frameworks used across differ-
ent stages of a pipeline (Pytorch, Keras, Pandas, MLIib, Ray, xarray
etc.) and thus, the possibilities of data and computation sharing are

BIRTE 2019, August 26, 2019, Los Angeles, CA, USA

type ts = u64, val = i64, elem = { ts, val };

2| |source: stream[elem], sink: streamappender[elem]]|
5| let filtered = filter (source, |e: elem| e.$1 > 0);
1| let windowed = for(filtered,

5 windower[unit, appender[val]]l(

6 le:elem,_,_| {[e.$0/60L], ()3,
7 |wm:ts,open:vec[ts],_| {filter (open,|t|t<wm),()},
8 |t:ts,agg:appender[vall| {t, normalize(result(agg))}),

9 |w:windower,e:elem| merge(w,e));
10| drain(windowed, sink)

Figure 4: Produced Arc IR

Operator

] Total time: 1 s, completed Mar 18, 2019 10:45:55 AM

Figure 5: Dataflow deployment

relatively low. Throughout the demo we will show how Arcon aims
to solve these problems through its IR enabling common expression,
optimization, and execution of fundamentally different tasks and
execute them by the same runtime.

Stateful Actor-based Services: The use of actor-based frame-
works is the current standard of writing general event-based ser-
vices and applications. Typically, application logic is divided into
logical units that are being implemented and executed in an actor
framework such as Akka or Orleans. A shortcoming of structuring
services in this way (often termed a “microservice”) is the lack of
providing integrated state management and fault tolerance across
microservices or actors. Arcon aims to support such an application
while providing uniform state management and seamless integra-
tion of long-running event-based task logic and dynamic calls, e.g.,
to fetch external resources for data enrichment.

4 CONCLUSIONS AND FUTURE WORK

We provide a detailed, interactive demonstration of Arcon, a general-
purpose distributed computing framework that aims to unify the
declaration and execution of data-driven applications. Throughout
a series of use-cases we show how programs that make use of mul-
tiple data processing frontends can be compiled, optimized and get
executed in a unified way. One of the main future directions of Ar-
con is to add support for most existing data computing frameworks
via a direct translation of their primitives to Arc.

REFERENCES

[1] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernandez-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, et al. The dataflow model: a
practical approach to balancing correctness, latency, and cost in massive-scale,
unbounded, out-of-order data processing. VLDB, 2015.

[2] P.Carbone, S. Ewen, G. Fora, S. Haridi, S. Richter, and K. Tzoumas. State Manage-
ment in Apache Flink: Consistent Stateful Distributed Stream Processing. Proc.
VLDB Endow., 10(12):1718-1729, Aug. 2017.

[3] L.Kroll, K. Segeljakt, P. Carbone, C. Schulte, and S. Haridi. Arc: An IR for Batch
and Stream Programming. Proceedings of the 17th ACM SIGPLAN International
Symposium on Database Programming Languages, 2019.

[4] S. Palkar, J. J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk, M. Schwarzkopf,
S. Amarasinghe, M. Zaharia, and S. InfoLab. Weld: A common runtime for high
performance data analytics. In Conference on Innovative Data Systems Research
(CIDR), 2017.

	Abstract
	1 Introduction
	2 System Overview
	2.1 The Arc Intermediate Language
	2.2 The Arcon Runtime

	3 System Demonstration
	3.1 Demonstration Flow
	3.2 Application Domains

	4 Conclusions and Future Work
	References

