
Arc: An IR for Batch and Stream Programming
Lars Kroll

KTH Royal Institute of Technology
Stockholm, Sweden

lkroll@kth.se

Klas Segeljakt
KTH Royal Institute of Technology

Stockholm, Sweden
klasseg@kth.se

Paris Carbone
RISE SICS

Stockholm, Sweden
paris.carbone@ri.se

Christian Schulte
KTH Royal Institute of Technology

Stockholm, Sweden
cschulte@kth.se

Seif Haridi∗
KTH Royal Institute of Technology

Stockholm, Sweden
haridi@kth.se

Abstract
In big data analytics, there is currently a large number of
data programming models and their respective frontends
such as relational tables, graphs, tensors, and streams. This
has lead to a plethora of runtimes that typically focus on the
efficient execution of just a single frontend. This fragmenta-
tion manifests itself today by highly complex pipelines that
bundle multiple runtimes to support the necessary models.
Hence, joint optimization and execution of such pipelines
across these frontend-bound runtimes is infeasible. We pro-
pose Arc as the first unified Intermediate Representation
(IR) for data analytics that incorporates stream semantics
based on a modern specification of streams, windows and
stream aggregation, to combine batch and stream computa-
tion models. Arc extends Weld, an IR for batch computation
and adds support for partitioned, out-of-order stream and
window operators which are the most fundamental building
blocks in contemporary data streaming.

CCS Concepts • Software and its engineering→ Con-
text specific languages;Compilers; •Computingmethod-
ologies →Distributed computing methodologies.

Keywords stream processing, intermediate representation,
data analytics
ACM Reference Format:
Lars Kroll, Klas Segeljakt, Paris Carbone, Christian Schulte, and Seif
Haridi. 2019. Arc: An IR for Batch and Stream Programming. In
Proceedings of the 17th ACM SIGPLAN International Symposium
on Database Programming Languages (DBPL ’19), June 23, 2019,
Phoenix, AZ, USA. ACM, New York, NY, USA, 6 pages. https://doi.
org/10.1145/3315507.3330199

∗Also with RISE SICS.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
DBPL ’19, June 23, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6718-9/19/06.
https://doi.org/10.1145/3315507.3330199

1 Introduction
Data-driven programming has gained critical traction in the
past decade resulting in a large family of data programming
models or “frontends” each of which addresses a very specific
class of operations (e.g., CQL [3], Tensors [1], Dataflow [2])
as well as scalable runtimes that employ and optimise dis-
tributed execution over a single frontend (e.g., Spark [22],
TensorFlow [1], Flink [5]). Modern pipelines typically re-
quire several frontends to express a complete end-to-end
logic for continuous applications and services. For exam-
ple, a typical recommendation pipeline contains ML feature
selection, data cleaning, training and serving. Hence, data en-
gineers have to bundle together code for multiple frontends,
and set up multiple runtimes to execute each respective part
efficiently. The end result is often highly complex and ineffi-
cient since functions do not share computational resources
or hardware (e.g., GPUs) across systems. Moreover, all in-
termediate results have to be materialized across runtime
boundaries, leading to heavy yet unnecessary IO overhead.

This paper contributes a new Intermediate Representation
(IR) specifically designed to combine data-centric operations
on stream and batch analytics, using a common translation
layer. This enables efficient cross-platform compilation, opti-
mization, and execution on shared hardware.

Several existing approaches in database and ML optimiza-
tion have considered the use of IRs for sharing execution
strategies and avoiding materialization, such as Halide [16]
for ML and image processing, River [17] for Dataflow pro-
gramming, and more recently Weld [13] which targets the
broader spectrum of batch data analytics. Weld is the most
general approach so far to express more than a single data
programming frontend. In addition, our IR, Arc, attempts to
support continuous and scalable operations on streams.

Data stream processing frameworks such as Apache Beam/-
Google Dataflow [2], Flink [5] and Heron [9] can scale today
to very large persistent state and offer strong consistency
guarantees, making them a very attractive choice for exe-
cuting the crucial parts of a data pipeline (e.g., ETL, model
building, feature selection, model serving, anomaly detection
etc.). At the same time, data stream models are known for
core differences and peculiarities compared to other data

https://doi.org/10.1145/3315507.3330199
https://doi.org/10.1145/3315507.3330199
https://doi.org/10.1145/3315507.3330199

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Lars Kroll, Klas Segeljakt, Paris Carbone, Christian Schulte, and Seif Haridi

1 |input: Vec[i32]|
2 r e su l t (for (input , Appender[i32], |app , element , index|
3 merge(app , element + 5)))

Listing 1. A simple add-5-mapper function in Weld.

processing models. We identify three of the most distinct
semantics across data stream frontends: out-of-order process-
ing [2, 10, 11, 18], window discretization [3, 14] and sliding
window aggregation [4, 19]. Despite the ongoing standard-
ization and unification efforts in data streaming, no existing
intermediate representation to date provides support for
these semantics. IBM’s River [17] is the only known data
streaming IR, however, it falls short of supporting out-of-
order processing or any other frontend whatsoever.

In this paper we present the fundamentals of Arc, a gener-
alization of the Weld IR which supports the expression and
compilation of long-running stream operators. The contribu-
tions of this work are twofold: We first distill the underlying
principles of data streaming, namely unordered streams, win-
dow discretization and aggregation. In addition, we present
an IR that can incorporate these semantics and allow the gen-
eration of static stream operator graphs and further open up
the prospect of truly unified future runtimes for hardware-
accelerated continuous batch and stream analytics.

2 Preliminaries: Weld IR Model
Most models for data programming typically involve differ-
ent types of side-effect free transformations on data collec-
tions and are adequately covered by prior work on Weld [12,
13] among others. The purpose of Arc is to complementWeld
with data stream semantics. To clarify this relationship we
summarize the concepts provided by Weld in this section.
Weld has been designed to improve the performance of

data analytics applications that rely on multiple libraries.
Libraries are optimized internally, but typically not with re-
spect to each other. In consequence, pipelining functions
of different libraries may require materialization of inter-
mediate results, causing expensive data movement. Weld
confronts this problem by introducing an IR which acts as a
common ground for different computations, allowing opti-
mizations across function boundaries.
The Weld IR expresses side-effect free transformations

over finite-sized data. The IR’s programming model is based
on monadic comprehensions [7] to enable data parallelism
and vectorization, while remaining hardware agnostic. A
sketch of relevant syntactical constructs of Weld can be seen
in listing 2, which also contains the new elements added
by Arc specially highlighted.1 Data types in Weld are either
value types or builder types (lines 7 and 12 in listing 2). Value
types are read-only data types, in the form of scalars, simd
types, and collections. Builder types are linear [15] write-
only data types. Values of a builder’s merge type may be
1All types in Weld are lower case, while Arc prefers them to be upper case.

1 proдram F { declaration } lambda
2 declaration F macro id ({ id , }) = expr ;
3 ⋃︀ type id = type ; // Type alias
4 ⋃︀ fn id | { type , } | (type) = lambda ;
5 lambda F | { id : type , } | expr
6 type F id ⋃︀ valueType ⋃︀ builderType ⋃︀ struct type
7 valueType F Unit ⋃︀ bool ⋃︀ i8 ⋃︀ i16 ⋃︀ . . .
8 ⋃︀ Simd [type]
9 ⋃︀ Vec [type]
10 ⋃︀ Dict [type , type]
11 ⋃︀ Stream [type]
12 builderType F Appender [type]
13 ⋃︀ Merger [type , binop]
14 ⋃︀ StreamAppender [type]
15 ⋃︀ Windower [type , type]
16 ⋃︀ . . .
17 struct type F { { type , } }
18 expr F opExpr ⋃︀ letExpr
19 opExpr F (expr)
20 ⋃︀ id
21 ⋃︀ l iteral
22 ⋃︀ type (expr) // Type cast
23 ⋃︀ for (iterator , expr , lambda)
24 ⋃︀ merge (expr , expr)
25 ⋃︀ result (expr)
26 ⋃︀ if (expr , expr , expr)
27 ⋃︀ cudf [id , type] ({ expr , })
28 ⋃︀ drain (expr , expr)
29 ⋃︀ builderConstr
30 ⋃︀ opExpr binop opExpr
31 ⋃︀ . . .
32 letExpr F let id : type = opExpr ; expr
33 binop F + ⋃︀ - ⋃︀ * ⋃︀ / ⋃︀ . . .
34 ⋃︀ id
35 l iteral F scalarLiteral
36 ⋃︀ [{ expr , }] // Vec literal
37 ⋃︀ { { expr , } } // Struct literal
38 ⋃︀ () // Unit literal
39 iterator F expr ⋃︀ iter (expr , expr , expr)
40 ⋃︀ next (expr)
41 ⋃︀ keyby (expr , lambda)
42 ⋃︀ . . .
43 builderConstr F Appender [type]
44 ⋃︀ Merger [type , binop]
45 ⋃︀ StreamAppender [type]
46 ⋃︀ Windower [type , type] (lambda , lambda,

lambda)
47 ⋃︀ . . .

Listing 2. Sketch of Arc’s syntax in EBNF. Elements added
to Weld by Arc are highlighted by grey background.

written to it with a merge operation (line 24) and values of a
builder’s result type are materialized from it through a result

operation (line 25). As builders are linear, they may only be
used once. While the merge operation returns a new builder,
the result operation simply consumes it. In addition to the
types described above, Weld also offers a structural product
type called struct (line 17). For iteration, Weld provides paral-
lel for-loops (line 23), over collections or ranges, into builders
which must have certain properties. Listing 1 gives an exam-
ple implementation for a Weld function which receives as
input a vector of integers and returns the result of adding the
value 5 to each element. The for-loop in the example takes
as input a collection, a builder, and a lambda expression. The
collection is iterated over, and each element is passed along
with the builder as input to the lambda expression, which
merges the element, with value-5 added, into the builder.
Note that the merge invocation returns a new builder, which is

Arc DBPL ’19, June 23, 2019, Phoenix, AZ, USA

1 |source: Stream[i32], sink: StreamAppender[i32]|
2 for (source , sink , |sink , element|
3 merge(sink , element + 5))

Listing 3. A simple add-5-mapper function in Arc.

1 |source: Stream[i32],
2 odd_sink: StreamAppender[i32],
3 even_sink: StreamAppender[i32]|
4 let mapped = r e su l t (
5 for (source , StreamAppender[i32], |sink , element|
6 merge(sink , element + 5)));
7 for (mapped , odd_sink , |sink , e|
8 i f (e % 2 != 0, merge(sink , e), sink));
9 for (mapped , even_sink , |sink , e|
10 i f (e % 2 == 0, merge(sink , e), sink))

Listing 4. An odd-even filter function in Arc.

passed to the next iteration of the loop. Moreover, the last it-
eration returns the builder from the for-loop. The final value
is given by calling the result operation on the Appender re-
turned from the for-loop, which materializes it into a vector
of integers.

3 Arc IR Model
We present a language called Arc that extends Weld for
streaming. Whereas Weld’s builders construct values, Arc
adds builders to describe streaming pipelines of operators
with sources and sinks, connected by channels. An impor-
tant observation is that stream sources are naturally read-
only, and stream sinks are write-only, making them analo-
gous in this regard to Weld’s collections and builders respec-
tively. Following this idea, Arc introduces streams (Stream)
and stream builders (StreamAppender) as two new data types
(lines 11 and 14 in the EBNF grammar of listing 2). A stream
operator is created by using a parallel for-loop over a Stream

and using a StreamAppender in the builder position (line 45 in
listing 2). A simple example of a map operation in Arc, which
adds the value 5 to each element in a stream of integers, is
shown in listing 3. The input source and output sink are passed
from the outside and information about physical sources and
sinks is treated as metadata to the application. Such meta-
data could be partition identifiers of Kafka topic sinks and
sources, for example. We use the syntactic structure of a
Weld for-loop to describe a dataflow operator that maps ev-
ery input value – or record – element to element+5 and emits it
to the output sink by merging.
Listing 4 illustrates another aspect of Arc, where we ex-

tend the mapping example from listing 3 with two for-loops,
which are combined with if-expressions to filter odd and
even numbers from an input source into separate sinks. In
both for loops, the current element being iterated over is
only merged into the respective sink if the condition of the
if-expression evaluates to true. Consequently, the branches
of the if-expressions return a sink which is passed to the for
loop’s next iteration. Calling result on the mapping for-loop,

which itself returns a StreamAppender[i32] sink, creates a new
Stream, i.e. a source, and instructs an implementation to create
a channel between the sink and the new source. Thus, multi-
ple operators can be connected to form a pipeline. As Streams
are immutable collections, they can be shared by multiple
operators in a pipeline, with a channel for each connection,
while StreamAppenders are linear and may thus not be shared.

3.1 Windowed Streams
In addition to the streaming operators described above, Arc
also provides a mechanism to work with finite subranges, or
windows, over a stream. In order facilitate this mechanismwe
introduce another new builder type, called a Windower (line
15 in listing 2). This builder type is the only “higher-order”
builder type in Arc, as in addition to having a merge and
result type, as a regular builder would, a Windower has two
new state types D and A, for discretization and aggregation
respectively, where A must be another builder type. Both
types and functions that operate on them are explained in
this section.

In order to describe which records fall into any given win-
doww , it is necessary to define an assigner function, which
we call ϑassiдn . In listing 5 line 12, for example, ϑassiдn takes
every record in a ten minute window and maps it to the same
window id. In general, it is also possible to assign a record
to multiple windows, thereby describing overlapping win-
dows. In Arc, assigners are given the set of currently open
windows, as well as the current instance of an arbitrary state
type D. Both may be used to make assignment decisions
based on (some function over) the already observed prefix
of the stream.
While ϑassiдn would be sufficient to describe stream dis-
cretization in a model where we can observe the full stream
before having to describe the resulting windowed stream, in
reality we must be able to decide when a window is complete
– we have assigned it all the values we will ever assign to
it – within a finite amount of time (or number of records).
If the stream is in-order this can be made decision based
on records alone. However, in the more general case were
records can arrive out-of-order, an additional control event
is needed to ascertain window completion. We call such an
event c(t)with a timestamp t a low watermark (or just water-
mark if the context is clear), if it asserts that no record with a
lower timestamp than t will arrive after it. Based on this, we
define a trigger function ϑtr iддer , that for each watermark
c(t) marks all windows ending in records with timestamp
tr < t as “closed”. For example, in listing 5 line 13, the ϑtr iддer
returns all open windows with ids smaller than the water-
mark timestamp (scaled to ten minutes). Together ϑassiдn
and ϑtr iддer describe the discretization of a stream into a
windowed stream and both share the same state type D, as
described above. ϑassiдn and ϑtr iддer are also the first two
arguments that must be provided to instantiate a Windower,
as seen in listing 5 lines 12,13.

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Lars Kroll, Klas Segeljakt, Paris Carbone, Christian Schulte, and Seif Haridi

1 type Timestamp , WindowId , ItemId , Watermark = u64;
2 type Price = u32;
3 type Item = { ItemId , Price };
4 type Element = { Timestamp , Element };
5 type MaxAggregator = Merger[Item , max_by_price];
6
7 fn max_by_price |Item , Item|(Item) = |a, b| i f (a.$1 > b.$1, a, b);
8
9 |source: Stream[Element], sink: StreamAppender[Element]|
10 let windowed_stream = for (source ,
11 Windower[Unit , MaxAggregator](
12 |e: Element , _, _| {[(e.$0)/600L], ()},
13 |wm: Watermark , open: Vec[WindowId], _| { f i l t e r (open , |id: WindowId| id < wm/600L), ()},
14 |id: WindowId , window: MaxAggregator| {id, r e su l t (window)}),
15 |e: Element , w: Windower[Unit , MaxAggregator]| merge(w, e));
16 drain(windowed_stream , sink)

Listing 5. NEXMark Query 7 in Arc.

At this point we could emit a (timestamp) ordered list (Vec)
of all records within a window to the downstream operators.
However, in most applications it is not this list that is de-
sired, but the result of applying some aggregation function
α ∶ Vec(Rin) → Rout to it. For example, in listing 5 we are
only interested in the value with the highest price. Clearly, in
such a scenario we would only want to maintain the highest
value observed so far (and its price) as the window state,
not all records in the window, which we are simply going to
discard after closing the window. Generalizing this example,
we want to maintain only an aggregation state A. To do so,
we must define functions λ↑, ●A,λ↓ with the following prop-
erties: λ↑ converts – we say “lifts” – a record of the input type
Rin to the aggregation type A. ●A is a binary operation on A,
that combines new values with the current aggregation state.
Since in Weld (and thus in Arc) only builders allow this kind
of behaviour, A must be a builder type. Depending on the
concrete properties of ●A (e.g., associativity, commutativity)
a compiler based on Arc will generate different implemen-
tations of the Windower and actual state maintained to deal
with out-of-orderness, for example. More details on the win-
dow aggregation strategies adopted by Arc can be found
in recent work on shared window aggregation [6, 20], and
the out-of-order stream processing paradigm [2, 10]. Finally,
when the window is closed, λ↓ converts – or “lowers” – the
final aggregate into the output record type Rout . In listing 5
lines 5,11,14,15, for example,A is a custom builder type called
MaxAggregator, which determines the largest values based on
its price. As Weld’s merge function already implicitly provides
a λ↑ from any builder’s merge typeM , our implementation
does not require a special λ↑-component since Rin = M . If
these types are different, Rin values can be mapped in the
for-loop’s function, before merging into the Windower. Finally,
we also provide the window id to our λ↓, which itself just
calls result on the aggregation builder, because emitted val-
ues must have a timestamp as well, which can typically be
derived from the window id.
It should be noted that in Weld, structs over builders form
builders with their merge type and result type also being

structs. In this way, the approach described above for win-
dows also supports algebraic aggregators, such as averaging,
for example.
Observe that every window aggregation operation in Arc
supports the full expressiveness of Weld’s batch processing
facilities.

StreamWindows Example: To demonstrate Arc, we picked
the StreamWindow Query 7 from the NEXMark benchmark,
defined as: “Query 7 monitors the highest price items currently
on auction. Every ten minutes, this query returns the highest
bid (and associated itemid) in the most recent ten minutes.”
[21], returning a single result. The CQL representation of
this query is given in the following listing:

1 SELECT Rstream(B.price , B.itemid)
2 FROM Bid [RANGE 10 MINUTE SLIDE 10 MINUTE] B
3 WHERE B.price = (SELECT MAX(B1.price)
4 FROM BID [RANGE 10 MINUTE SLIDE 10 MINUTE] B1)
5 LIMIT 1;

The Arc version of this query is in listing 5. The program
accepts an input source and output sink of tuples that con-
tain a timestamp, item id and price. A windowed stream is
created by merging the input stream into a Windower over a
for-loop (lines 11-15). Each record is assigned to its window
based on its timestamp (line 12), and windows are triggered
as watermarks with higher timestamps arrive (line 13). The
Windower’s aggregation type is a Merger that yields the highest
bid of all records in a window using the max_by_price function.
Windows are lowered in line 14 by materializing the Merger

through the result operation. Finally, the drain operation trans-
fers records of the windowed stream into the output sink
without applying any transformations.

3.2 Partitioned Streams
While it is sometimes sufficient to be able to process a stream
in purely sequential fashion, this approach does not scale
well. For this reason, most stream processors provide mech-
anism to partition incoming streams into multiple infinite
substreams, the union of which would recover the original
stream. Substreams are then processed independently and

Arc DBPL ’19, June 23, 2019, Phoenix, AZ, USA

1 |source: Stream[i32],
2 even_sink: StreamAppender[i32],
3 odd_sink: StreamAppender[i32]|
4 for (source , {even_sink , odd_sink}, |sink , element|
5 let mapped = element +5;
6 i f (mapped % 2 == 0,
7 {merge(sink.$1, mapped), sink.$2},
8 {sink.$1, merge(sink.$2, mapped)}))

Listing 6. Optimized version of listing 4 where the pair of
filters have been transformed into a filter over pairs.

in parallel. A partitioning function fp describes which sub-
stream each record belongs to. A streaming runtime them
assigns certain ranges of partitioned space to certain nodes,
thus creating a substream locally observed by each node.
No state is typically shared between operators of different
partitions and the only global (cross partition) guarantees
provided are those given by watermarks.

Partitioned operators can be created in Arc via a special
keyby iterator (line 41 in listing 2), which replaces the implicit
next iterator (line 40), that streams use by default, in the first
argument of a for-loop. The keyby implementation takes a
user-defined partitioning function as a parameter. Channels
created between partitioned operators are implicitly parti-
tioned and may lead to shuffles if the partitioning at the two
ends does not match. A Windower used as a builder with a
partitioned stream must describe a local discretizer, that is
it may only act on information from its partition with the
exception of watermarks.

3.3 Other Weld Extensions
There are a few other small extensions to Weld, that are
required for Arc to be sufficiently expressive include the
following: declaring named functions (line 4 in listing 2) and
using such functions as aggregators in Merger-type builders
(line 34); declaring and pattern-matching tagged union types,
and an appropriate union iterator, are required to support op-
erators with multiple input streams; defining custom builder
types either inside Arc or as external C or Rust UDFs will
be unavoidable. Custom builders should be able to annotate
their semantics, in order to know if they are associative, or
commutative.

3.4 Optimizations
Optimizations enabled by Arc IR include common dataflow
optimizations such as operator reordering, redundancy elimi-
nation, operator separation, and fusion [8]. Operator reorder-
ing switches the order of two operators, such that the work
of the second one is reduced by the first one. We support
redundancy elimination such as avoiding duplicate compu-
tation after a split, for example by changing two separate
for-loops with a single builder each to a single for-loop with
a struct over the two builders. Operator separation splits an
operator into multiple operators to enable reordering, reduce

source

odd-filter

even-filter

odd-sink

even-sink
optimized dataflow
un-optimized dataflow

map

Figure 1. The generated dataflow graph for the optimized
example.

per-operator state, and increase the possibility for pipelining
parallelism. Operator fusion combines multiple operators
into a single operator in order to avoid unnecessary materi-
alization. Listing 6 together with Fig.1 illustrate an example
of operator fusion, where the pair of filters from listing 4 are
reformulated during optimization to be a filter over pairs,
requiring only a single if-expression. The resulting filter is
also fused together with the map operator under the same
for-loop, effectively unifying all three operators. This way,
Arc avoids the materialization of an intermediate stream, as
well as the unnecessary duplicate condition check in both
branches of the filter.

4 Implementation
We implemented a prototype2 of a compiler frontend for Arc
in Scala. The implementation is backwards-compatible with
pure Weld. At this point, the frontend includes lexing, pars-
ing, name resolution, macro expansion, and type inference.
To support dynamically typed frontend languages, Arc,

like Weld, provides a global type inference mechanism. It is
split into two phases: the first traverses the syntax tree and
derives type constraints while the second uses a constraint
solver to find a solution. If a solution is found, it is applied
to the syntax tree. This particular implementation is more
powerful, but often slower, than the one found in Weld.

5 Conclusion
This paper describes Arc, which is as an extension to the
Weld IRwith streaming primitives, allowing different DSLs to
be expressed in a common abstraction layer. Every window
in Arc has the same properties as a a finite data set, thus
allowing arbitrary Weld computations to be performed on
it. In this way, we support a true combination of batch and
stream computations. The design choices we described are
motivated by a general model of stream computations. In
addition to describing non-blocking stream operators, Arc
allows the expression of a wide variety of discretization and
window aggregation techniques. This expressiveness allows
a number of streaming optimizations to be applied at the IR
level, and thereby across different frontends.
We intend to use Arc as a hardware-independent first

stage in a stream-processing compiler pipeline that allows
2The sources can be found at https://github.com/cda-group/arc.

https://github.com/cda-group/arc

DBPL ’19, June 23, 2019, Phoenix, AZ, USA Lars Kroll, Klas Segeljakt, Paris Carbone, Christian Schulte, and Seif Haridi

operator implementations, leveraging a variety of backends,
such as CPUs, GPUs, and FPGAs.

Acknowledgments
This material is based upon work on the Continuous Deep
Analytics project granted by the Swedish Foundation for
Strategic Research (SSF) under Grant No.: BD15-0006.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: a system for large-scale machine
learning.. In OSDI, Vol. 16. 265–283.

[2] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, et al. 2015. The dataflow model:
a practical approach to balancing correctness, latency, and cost in
massive-scale, unbounded, out-of-order data processing. Proceedings
of the VLDB Endowment 8, 12 (2015), 1792–1803.

[3] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL
continuous query language: semantic foundations and query execution.
VLDBJ (2006).

[4] Arvind Arasu and Jennifer Widom. 2004. Resource sharing in contin-
uous sliding-window aggregates. In VLDB.

[5] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. 2015. Apache flink: Stream and batch
processing in a single engine. Bulletin of the IEEE Computer Society
Technical Committee on Data Engineering 36, 4 (2015).

[6] Paris Carbone, Jonas Traub, Asterios Katsifodimos, Seif Haridi, and
Volker Markl. 2016. Cutty: Aggregate Sharing for User-Defined Win-
dows. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. ACM.

[7] Peter MD Gray, Larry Kerschberg, Peter JH King, and Alexandra Poulo-
vassilis. 2013. The functional approach to data management: modeling,
analyzing and integrating heterogeneous data. Springer Science &
Business Media.

[8] Martin Hirzel, Robert Soulé, Scott Schneider, Buğra Gedik, and Robert
Grimm. 2014. A catalog of stream processing optimizations. ACM
Computing Surveys (CSUR) 46, 4 (2014), 46.

[9] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli,
Christopher Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ra-
masamy, and Siddarth Taneja. 2015. Twitter Heron: Stream Processing
at Scale. In ACM SIGMOD.

[10] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos,
Theodore Johnson, and David Maier. 2008. Out-of-order processing: a
new architecture for high-performance stream systems. Proceedings
of the VLDB Endowment 1, 1 (2008), 274–288.

[11] David Maier, Jin Li, Peter Tucker, Kristin Tufte, and Vassilis Papadi-
mos. 2005. Semantics of data streams and operators. In International
Conference on Database Theory. Springer, 37–52.

[12] Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha
Thaker, Rahul Palamuttam, Parimajan Negi, Anil Shanbhag, Malte
Schwarzkopf, Holger Pirk, Saman Amarasinghe, et al. 2018. Evaluat-
ing end-to-end optimization for data analytics applications in weld.
Proceedings of the VLDB Endowment 11, 9 (2018), 1002–1015.

[13] Shoumik Palkar, James J Thomas, Anil Shanbhag, Deepak Narayanan,
Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe, Matei Zaharia,
and Stanford InfoLab. 2017. Weld: A common runtime for high per-
formance data analytics. In Conference on Innovative Data Systems
Research (CIDR).

[14] Kostas Patroumpas and Timos Sellis. 2006. Window specification over
data streams. In Current Trends in Database Technology–EDBT 2006.
Springer, 445–464.

[15] Benjamin C Pierce. 2005. Advanced topics in types and programming
languages. MIT press.

[16] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, FrédoDurand, and SamanAmarasinghe. 2013. Halide: a language
and compiler for optimizing parallelism, locality, and recomputation
in image processing pipelines. ACM SIGPLAN Notices 48, 6 (2013),
519–530.

[17] Robert Soulé, Martin Hirzel, Buğra Gedik, and Robert Grimm. 2016.
River: an intermediate language for stream processing. Software:
Practice and Experience 46, 7 (2016), 891–929.

[18] Utkarsh Srivastava and Jennifer Widom. 2004. Flexible time manage-
ment in data stream systems. In Proceedings of the twenty-third ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
ACM, 263–274.

[19] Kanat Tangwongsan, Martin Hirzel, Scott Schneider, and Kun-Lung
Wu. 2015. General incremental sliding-window aggregation. In VLDB.

[20] Jonas Traub, Philipp Grulich, , Alejandro Rodriguez Cuellar, Sebastian
Breß, Asterios Katsifodimos, Tilmann Rabl, and Volker Markl. 2019.
Efficient Window Aggregation with General Stream Slicing. In EDBT.
ACM.

[21] Pete Tucker, Kristin Tufte, Vassilis Papadimos, and David Maier. 2008.
NEXMark–A Benchmark for Queries over Data Streams (DRAFT). Tech-
nical Report. Technical report, OGI School of Science & Engineering
at OHSU, Septembers.

[22] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing withWorking
Sets. HotCloud (2010).

	Abstract
	1 Introduction
	2 Preliminaries: Weld IR Model
	3 Arc IR Model
	3.1 Windowed Streams
	3.2 Partitioned Streams
	3.3 Other Weld Extensions
	3.4 Optimizations

	4 Implementation
	5 Conclusion
	Acknowledgments
	References

