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Dataflow systems have emerged as the leading solution for running continuous analytics applications in the
cloud, offering scalability, low-latency, and strong processing guarantees. However, the limitations imposed
by their programming frontends, unsafe dataflow libraries and restrictive query languages, hinder their true
potential. We propose Arc-Lang, a programming language for continuous analytics that offers the best of
both worlds: flexibility, safety, efficiency, and conciseness. This report gives a technical overview of Arc-Lang,
covering its motivation, design and applications.

ACM Reference Format:
Klas Segeljakt, Seif Haridi, Frej Drejhammar, and Paris Carbone. 2023. Arc-Lang Research Report. 1, 1
(September 2023), 32 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

Contents

Abstract 1
Contents 1
1 Introduction 3
2 The Dataflow Model 3
2.1 Capabilities 4
2.2 Alternatives 5
2.3 Challenges 5
3 Dataflow Programming Tools 6
3.1 Streaming Libraries 6
3.2 Streaming Query Languages 7
4 Arc-Lang 7
4.1 Dataflow Subset 8
4.1.1 Streams 8
4.1.2 Source 9
4.1.3 Sink 10
4.1.4 Flatmap 10
4.1.5 Keyby and Unkey 12
4.1.6 Scan 12

Authors’ addresses: Klas Segeljakt, KTH Royal Institute of Technology, Brinellvägen 8, Stockholm, Stockholm, Sweden,
10044, klasseg@kth.se; Seif Haridi, KTH Royal Institute of Technology, Brinellvägen 8, Stockholm, Stockholm, Sweden, 10044,
haridi@kth.se; Frej Drejhammar, frej.drejhammar@ri.se, KTH Royal Institute of Technology, Brinellvägen 8, Stockholm,
Stockholm, Sweden, 10044; Paris Carbone, KTH Royal Institute of Technology, Brinellvägen 8, Stockholm, Stockholm,
Sweden, 10044, parisc@kth.se.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
XXXX-XXXX/2023/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2023.

HTTPS://ORCID.ORG/0000-0001-7096-4401
HTTPS://ORCID.ORG/0000-0002-9351-8508
HTTPS://ORCID.ORG/0000-0002-9351-8508
HTTPS://ORCID.ORG/0000-0002-9351-8508
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0001-7096-4401
https://orcid.org/0000-0002-9351-8508
https://orcid.org/0000-0002-9351-8508
https://orcid.org/0000-0002-9351-8508
https://doi.org/10.1145/nnnnnnn.nnnnnnn


2 Klas Segeljakt, Seif Haridi, Frej Drejhammar, and Paris Carbone

4.1.7 Apply 14
4.1.8 Window 15
4.1.9 Merge 17
4.1.10 Fork 17
4.2 Relational Subset 17
4.2.1 From 18
4.2.2 Into 18
4.2.3 Select 19
4.2.4 With 19
4.2.5 Where 19
4.2.6 Query 20
4.2.7 Roll 20
4.2.8 Group 20
4.2.9 Compute 21
4.2.10 Limit 21
4.2.11 Order 21
4.2.12 Over 22
4.2.13 View 22
4.2.14 Join-On 23
4.2.15 Join-Over 23
4.2.16 Join-Over-On 24
4.2.17 Left, Right, Full, and Anti-Join 24
4.2.18 Union 26
4.2.19 Union 26
4.3 Sequential Subset 27
4.3.1 Statements 27
4.3.2 Variable Definition 27
4.3.3 Expression Statements 28
4.3.4 Functions 28
4.3.5 Methods 29
4.3.6 Builtins 29
4.3.7 User-Defined Data Types 31
4.3.8 Type Aliases 32
References 32

, Vol. 1, No. 1, Article . Publication date: September 2023.



Arc-Lang Research Report 3

1 INTRODUCTION
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Fig. 1. The generic structure of a continuous analytics application.

Data is today being produced in massive volumes at an unprecedented rate, with sources ranging
from social media user interactions to autonomous industrial sensors. This proliferation has resulted
in a new domain of applications - continuous analytics - that requires data to be analyzed as soon
as it is produced to support quick and accurate decision-making. Examples of continuous analytics
applications include fraud detection of financial transactions, ride-sharing coordination, stock
market prediction, online medical diagnosis, weather forecasting, cyber security, and speech
recognition.

Continuous analytics applications are traditionally modelled as a sequence of stages that progres-
sively derive meaningful information from data, as illustrated in 1. Data must typically be cleaned
using application-dependent logic, transformed into a structured format, and refined with historical
information to make it suitable for analysis. Analysis typically ranges from the calculation of basic
summaries to advanced machine learning inference.

This report introduces Arc-Lang, a programming language specifically designed for expressing
continuous analytics applications. We begin by describing the dataflow model, a computational
model supported by modern systems for continuous analytics, which underpins Arc-Lang (??). We
then give an overview of current programming frontends that support this model and pinpoint their
advantages and shortcomings in terms of safety, efficiency and expressiveness (sec. ??). We then
progressively introduce Arc-Lang in a top-down manner ??, showing how its features addresses
the observed shortcomings. Finally, we conclude with prospects about future work.

2 THE DATAFLOWMODEL
Continuous Analytics applications today run on dedicated dataflow systems (e.g., Apache Flink,
Apache Spark, and Cloud Dataflow) that implement the dataflow model. Dataflow is, in the most
general sense, a computational model that represents programs as dataflow graphs modelling
the flow of data between operators. These graphs are typically acyclic, meaning data flows in
a unidirectional fashion from upstream operators to downstream operators. An operator is a
concurrent entity that continuously consumes and produces data. Operators are independent,
meaning the only means for communication between them is through their dataflow dependencies.
Dataflow can naturally be extended to support event-driven programming, meaning the flow

of data is driven by external events such as user interactions (e.g., clicks on websites or mobile
apps) or system events (e.g., log entries, error messages or performance metrics) [4]. An event
is fundamentally a data point paired with a timestamp describing something that happened at a
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specific moment in time. This temporal dimension allows operators to aggregate information over
time with respect to when the data was originally produced. The core abstraction for defining
dataflow graphs are streams. A stream is an unbounded sequence of events, made available over
time, that can be transformed through operators. Operators appear to process events in the order
they were generated (i.e., timestamp order) up to a certain bound of disorder. A source is a special
type of operator that ingests events to form a stream. Analogously, a sink is an operator that
commits a stream to make its events observable. Together, sources and sinks serve as the only point
of interaction dataflow applications have with the external world.

2.1 Capabilities
The dataflow model exhibits multiple capabilities that make it promising from an implementation
standpoint. These are as follows:

• Location Transparency. No specific physical location is specified where operators must execute.
It is up to the dataflow system to decide how dataflow graphs aremapped to a physical architecture.
Dataflow graphs can for example be projected to a network of machines, where each computer is
responsible for executing a subset of the operators.
• Supply- and Demand-Driven Execution. Dataflow systems can support both supply-driven
and demand-driven execution. Supply-driven execution executes operators eagerly as soon as
their input data is available, pushing data through the system based on supply. Demand-driven
execution executes operators lazily only when their output is requested, pulling data through
the system based on demand. Generally a mix of both modes is used.
• Streaming and Batch Execution. Dataflow systems can support both streaming and batch
execution. Streaming execution processes data incrementally, one event at a time, resulting in
lower end-to-end latency. Batch execution processes data in bulk, multiple events at a time,
resulting in higher end-to-end throughput.
• Data Parallelism. A stream can be sharded into logical partitions, allowing an operator to
process different partitions in parallel as long as no communication is required between them.
• Pipeline Parallelism. An operator which consumes data can execute in parallel with the
operator that is producing the data.
• Concurrent I/O. Sources and sinks are logical, and can represent an arbitrary number of physical
endpoints (e.g., TCP connections). No event ordering is enforced between endpoints, allowing
them to be handled concurrently.
• Source Parallelism. Events may be ingested to the system in parallel. This, for example, allows
a source to read a file and ingest each line in parallel.
• Out-of-order Processing. Events can be processed out-of-order with respect to the time they
were generated, as long as they appear to be processed in-order. A system may thus induce
disorder by processing events with data parallelism, and later sort the events into the right order
before an order sensitive operation.
• Flow-Control. Dataflow systems can support flow-control through techniques such as buffering,
backpressure or rate-limiting. Flow control allows the rate of data production to be controlled by
the rate of consumption between operators, ensuring the system does not run out of resources.
• Deadlock-Freedom. As a consequence of dataflow graphs being acyclic, flow-control cannot
deadlock a system by making a consumer block itself from producing data. Additionally, since
operators are independent, it is not possible for the system to deadlock by operators circularly
waiting for shared resources.
• Fault Tolerance. Dataflow graphs can be persisted to a consistent state using a variety of
snapshot protocols, providing both fast recovery and low runtime overhead.
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• Transactional Guarantees. Dataflow systems can guarantee that their results are committed
exactly once to the outside world. If an event was outputted by a sink, then the system must guar-
antee that its persisted state reflects this information. Exactly-once guarantees can additionally
be weakened, to at-least-once or at-most-once, to improve performance.
• System Composition. Dataflow systems can be composed with other systems through the
sources and sinks of their dataflow graphs. This for example allows dataflow systems to be used in
microservice architectures, where each microservice can be a dataflow graph that communicates
through their sources and sinks.

2.2 Alternatives
In addition to the dataflow model, there are more models being used today for complex analysis
tasks, these include:
• Relational Model. The relational model is a data model that structures data in terms of relations,
allowing it to be manipulated with declarative languages that build upon relational algebra. In
contrast, the dataflow model does not enforce a particular data model or algebra, providing
flexibility to support unstructured data and user-defined functions at the expense of complexity.
• Workflow Model. The workflow model is a computational model that structures programs
as workflow graphs modelling the flow of control between a system of tasks [6]. Workflows
impose a strict order in which tasks must be completed. This is useful in applications where
ordering plays a significant role, such as business processes [? ], scientific processes [? ], and ML
training pipelines [? ]. In contrast to the workflow model, the dataflow model has no ordering
requirements or guarantees, and focuses on modelling applications that run continuously without
completion.
• Actor Model. The actor model is a general model for concurrent computational which ori-
ents programs around actors. Actors are entities that make independent local decisions and
communicate through asynchronous message passing. In response to receiving a message from
another actor, an actor can perform some computation which possibly involves creating new
actors and sending messages to other actors. Actors are addressable by reference, allowing for
dynamic communication patterns where references are communicated using message passing.
The dataflow model can be viewed as a subset of the actor model that imposes a static and acyclic
messaging topology to enable the guarantees listed in 2.1.

2.3 Challenges
Despite the dataflow model’s significant benefits in scalability and fault tolerance for large-scale
data processing, its adoption and practical application come with challenges:
• System Complexity. Designing and implementing dataflow systems is difficult, requiring
deep understanding in areas that include operating systems, distributed systems, databases, and
hardware. This complexity can become a barrier to adoption if exposed to end-users. There is a
pressing need for dataflow programming frontends that abstract their underlying system without
leaking its implementation details.
• Shift in Programming Paradigm. Although dataflow programming is powerful at expressing
data processing patterns, it requires a fundamental shift in thinking about how to write programs.
Users must move away from a general purpose programming perspective, where anything is
possible, to one that restricts programs to dataflow graphs.
• Low-Level Representation. While dataflow graphs capture the essence of functional data
transformation, they can prove to be too low-level for end-users. There is a need for higher-level
dataflow-based abstractions that more closely reflect the application domain.
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• Limited Observability. The inherent parallel and distributed nature of dataflow systems make
them considerably more difficult to introspect and understand when compared to traditional
programs that run locally on a single thread. Developers cannot easily inspect intermediate states
of the data as it flows through the dataflow graph, since the only observable components of a
graph are sources and sinks, which is critical for debugging, testing, andmonitoring. Conventional
means for extracting information from running programs such as debug-printing to terminal are
generally not possible.
• Non-Determinism. The non-deterministic nature of dataflow systems introduces challenges
when it comes to reasoning about program behaviour. Without guarantees on the order of
execution (e.g., ordering of event delivery) programs may exhibit unexpected results or bugs that
are hard to reproduce.

3 DATAFLOW PROGRAMMING TOOLS
In this section we review and compare different tools for building dataflow applications that are
offered by current dataflow systems and discuss their strengths and weaknesses.

3.1 Streaming Libraries
Streaming libraries such as Flink, Kafka Streams and Spark Streaming, are libraries hosted by
General Purpose Languages (GPLs) that allow users to formulate dataflow graphs using a catalogue
of functions that produce, transform, and consume data streams. These functions typically take
a User-Defined Function (UDF) as input that is applied on individual events of a data stream
which have a User-Defined Type (UDT). A program which, given a stream of temperature readings,
calculates the maximum temperature per city per day, can be written as:

case class CityTemp(city: String, time: Long, temp: Double);
case class CityMaxTemp(city: String, time: Long, max_temp: Double);

def main() {
val env = StreamExecutionEnvironment.getExecutionEnvironment

env
.readCsvFile("input.csv")
.keyBy(_.city)
.timeWindow(Time.days(1))
.reduce((a, b) => CityMaxTemp(a.city, a.time, max(a.temp, b.temp))))
.writeAsCsv("output.txt")

env.execute()
}

This style of programming offers complete freedom in what users can programmatically express
but comes at the cost of safety, efficiency, and ease of use:
• Safety: It is easy to write programs that type check but are still semantically incorrect with
respect to the dataflow model. For example, nothing hinders a UDF inside an operator from
accessing resources from the local file system. This can break location transparency, since an
operator may produce different results depending on where it is executed.
• Efficiency: The runtime system views UDFs and UDTs as black boxes, meaning it has no
perception or control over what code is being executed or what data is being manipulated. This
prevents user code from being rewritten for further optimisation.
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• Ease of Use: The GPL provides constructs aimed at general-purpose programming as opposed to
dataflow programming, potentially resulting in boilerplate code that is unrelated to the problem
being solved.

3.2 StreamingQuery Languages
Streaming Query languages such as CQL [2], Calcite SQL [3] and KSQL [1] are high-level declarative
languages that extend the relational model with support for stream processing. The code for
calculating temperature statistics can be written in Calcite SQL as:

CREATE TABLE CityTemp (
city STRING,
time BIGINT,
temp DOUBLE

) WITH ('path' = 'input.csv', 'format' = 'csv');

CREATE TABLE CityMaxTemp (
city STRING,
day TIMESTAMP(3),
max_temp DOUBLE

) WITH ('path' = 'output.csv', 'format' = 'csv');

INSERT INTO CityMaxTemp
SELECT
city,
TUMBLE_START(time, INTERVAL '1' DAY) AS day,
MAX(temp) AS max_temp

FROM CityTemp
GROUP BY city, TUMBLE(time, INTERVAL '1' DAY);

This style of programming restricts the user to a programmingmodel that clearly defineswhat a legal
program is. Programs that type check in this model are guaranteed to have well-defined behaviour.
These language constraints additionally serve as a guide, helping programmers understand what
programs are possible to write.
• Expressiveness. Query languages are declarative, meaning their programs are deterministic
in how they produce their outputs. As a result, arbitrary computation is not feasible. Query
languages, for example, cannot parse unstructured data, read configuration files, or contain
structural control-flow, which are often necessary in end-to-end applications.
• Extensibility. While streaming libraries can import functionality from other
• Modularity. Additionally, query languages are high-level and as a result require no wide support
for abstraction since the necessary abstractions are already provided out of the box.
In cofor this reason, often found embedded inside GPLs alongside streaming libraries to model

declarative program segments such as data cleaning or descriptive statistics.

4 ARC-LANG
In this section we provide a specification of Arc-Lang1. We begin by discussing requirements
and high-level decisions behind Arc-Lang (sec. ??). We then describe Arc-Lang’s design by first
introducing its dataflow operators that form the basis of dataflow applications (sec. ??). Then, we
describe a higher-level relational syntax and demonstrate how it can be layered over the dataflow
operators to provide a more expressive and intuitive programming model (sec. ??). Next, we describe
1The source code of Arc-Lang is available on out GitHub repository: https://github.com/cda-group/arc
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Fig. 2. Arc-Lang combines the best of both worlds of Dataflow Libraries andQuery Languages

Arc-Lang’s sequential syntax which combines aspects of functional and imperative programming
for building dataflow graphs and defining UDFs and UDTs ??. Our explanation is top-down and
assumes some prior knowledge in programming languages since we may refer to concepts before
they are described with more detail. When formalising the syntax of the paradigms, we often use
the notation S1,· · ·,Sn to represent a comma-separated sequence of symbols S with length n, where
n ≥ 1 unless specified otherwise.

Operators Description
source Ingest a stream from the outside world (sec. 4.1.2).
sink Commit a stream to the outside world (sec. 4.1.3).

flatmap Map each event to many new events using a UDF (sec. 4.1.4).
keyby Group events by key, producing a keyed stream (sec. 4.1.5).
unkey Ungroup keyed events, producing a stream (sec. 4.1.5).
apply Apply a state machine on a stream to transform it (sec. 4.1.7).
window Group events into windows and then aggregate them (sec. 4.1.8).
merge Merge two streams into one (sec. 4.1.9).
fork Fork one stream into two (sec. 4.1.10).

Table 1. An overview of the built-in dataflow operators of Arc-Lang.

4.1 Dataflow Subset
Arc-Lang programs are specifications of dataflow graphs that describe transformations of data
streams. To construct dataflow graphs, Arc-Lang provides a set of dataflow operators, listed in 1
that operate on two types of data streams. This section gives an overview of these streams each
operator, gives motivating examples that show how they can be used in real-world applications,
and describes their individual semantics from a sequential execution perspective.

4.1.1 Streams. Streams provide the illusion of a infinite sequence of events that can be received and
processed one-by-one. There are two types of streams in Arc-Lang, Stream[T] and KeyedStream[K,T].
These streams differ in how they enable parallelism.
• A Stream[T] is a stream whose events appear to be processed in sequential order. Operations on
this type of stream can only be parallelised if they are commutative or associative (i.e., the order
of operations or operands is insignificant).
• A KeyedStream[K,T] is a stream grouped by a key attribute into independent partitions, where the
events of each partition appear to be processed in sequential order. Operations on this type of
stream can be parallelised per-partition.
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4.1.2 Source. A source is an operators that ingests data into a dataflow graph from the outside
world to produce a stream. The source operator has the following signature.

def source[T](Connector, Encoding, TimeSource[T] = ingestion()): Stream[T];

Sources take:
• A connector that specifies from where data should be ingested. Currently supported connectors
are standard input, file, Kafka, TCP, and HTTP.

def stdio(): Connector;
def file(path: Text): Connector;
def http(host: Text, port: I32, path: Text): Connector;
def tcp(host: Text, port: I32): Connector;
def kafka(host: Text, port: I32, topic: Text): Connector;

• A encoding specifying how data should be deserialized. Currently, supported encodings are CSV
(Comma Separated Values), TSV (Tab Separated values), JSON (Javascript Object Notation), and
UTF8 (plaintext). In practice, more encodings could be added.

def csv(sep: Char = ','): Encoding;
def tsv(): Encoding;
def json(): Encoding;
def text(): Encoding;

• An optional time source specifying how timestamps should be derived from events. Timestamps
are necessary for certain streaming operations, such as time-based window aggregation, which
will be explained in section 4.1.8. The supported time sources are ingestion time (default if
unspecified) and event time.
– Ingestion time derives a timestamp for each event from the source’s local physical clock at
the point of ingestion. This is useful when the data itself does not contain timestamps.

– Event time derives a timestamp for each event from the data it carries using a timestamp
extractor function.

def ingestion[T](): TimeSource[T],
def event[T](extractor: fun(T):Time): TimeSource[T],

Following are examples of how to define data sources with different connectors, formats and time
sources. Note that data sources, like other operators, are compositional, and data type annotations
can be omitted as long as later operations can infer them.

type Item = {name:Text, price:I32};
type Request = {id:U32, price:F64, items:[Item]};

val s0: Stream[Request] = source(stdio(), csv());
val s1: Stream[Request] = source(file("logs/*.csv"), csv(sep:';'));
val s2: Stream[Request] = source(http("127.0.0.1", 8080, "requests"), tsv());
val s3: Stream[Request] = source(tcp("127.0.0.1", 8081), text());
val s4: Stream[Request] = source(kafka("127.0.0.1", 8082, "requests"), json());

# Ingestion and event time
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val s5 = source(stdio(), csv(), ingestion());
val s6 = source(stdio(), csv(), event(fun(e) = e.timestamp));

Algorithm 1 Ingestion-Time Source
1: procedure isource(𝑐 , 𝑓𝑑 , 𝑑𝑖 )
2: (𝑡𝑥 ′, 𝑟𝑥 ′) ← channel()
3: spawn
4: 𝑟𝑥𝑐 ← connect(𝑐)
5: 𝑟𝑥𝑡 ← timer(𝑑𝑖 )
6: loop
7: on event
8: case 𝑥 ← recv(𝑟𝑥𝑐 )
9: 𝑣 ← 𝑓𝑑 (𝑥)
10: 𝑡 ← now()
11: send(𝑡𝑥 ′, data(𝑣, 𝑡))
12: case 𝑡𝑖𝑐𝑘 ← recv(𝑟𝑥𝑡 )
13: 𝑡 ← now()
14: send(𝑡𝑥 ′,watermark(𝑡))
15: return 𝑟𝑥 ′

16:
17:
18:
19:
20:
21:

Algorithm 2 Event-Time Source
1: procedure esource(𝑐, 𝑓𝑑 , 𝑑𝑖 , 𝑓𝑡 , 𝑑𝑠 )
2: 𝑡𝑥 ′, 𝑟𝑥 ′ ← channel()
3: spawn
4: 𝑟𝑥 ← connect(𝑐)
5: 𝑡𝑚𝑎𝑥 ← 0
6: 𝑡𝑤 ← 0
7: 𝑖 ← interval(𝑑𝑖 )
8: loop
9: select
10: case 𝑥 ← recv(𝑟𝑥)
11: 𝑣 ← 𝑓𝑑 (𝑥)
12: 𝑡 ← 𝑓𝑡 (𝑥)
13: if 𝑡 < 𝑡𝑤
14: continue
15: if 𝑡 > 𝑡𝑚𝑎𝑥

16: 𝑡𝑚𝑎𝑥 ← 𝑡

17: send(𝑡𝑥 ′, data(𝑣, 𝑡))
18: case tick(𝑖)
19: 𝑡𝑤 ← 𝑡𝑚𝑎𝑥

20: send(𝑡𝑥 ′,watermark(𝑡𝑤))
21: return 𝑟𝑥 ′

The semantics of the source operators are illustrated in figure 1 and 2. In these algorithms, 𝑐 is
the connector, 𝑓𝑑 is the deserialisation function specified by the data format, 𝑑𝑖 is the watermark
interval duration, 𝑓𝑡 is the timestamp extractor function, and 𝑑𝑠 is the slack duration.

4.1.3 Sink. Sinks are operators that commit results computed by the dataflow graph to the external
world. The sink operator takes a stream, connector, and data format.

def sink[T](Stream[T], Connector, Encoding);

An example pipeline that converts the data format of events from CSV to JSON can be written as
follows:

val s: Stream[Request] = source(stdio(), csv());
sink(s, stdio(), json());

4.1.4 Flatmap. FlatMap is an operator that can be used subsumes all stateless streaming operators

def flatmap[I, O](Stream[I], fun(I): Vec[O]): Stream[O];

Using flatmap, it is possible to define other operators such as:
• map: Maps each event of a data stream to a new event using a user-defined mapping function.
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def map(stream, f) = stream.flatmap(fun(x) = [f(x)])

• filter: Filters out events of a data stream using a user-defined predicate.

def filter(stream, p) = stream.flatmap(fun(x) = if p(x) { [x] } else { [] })

• flatten: Flattens a stream of vectors of events into a stream of events.

def flatten(stream) = stream.flatmap(fun(x) = x)

Although flatmap is general enough to implement many kinds of operators, Arc-Lang provides
specialized implementations of map, filter and flatten to avoid unnecessary computation. Below is
an example of how these operators can be used, showing a pipeline which extracts all items from
requests with a price greater than 10.0 USD.

val s0: Stream[Request] = source(stdio(), json());
val s1: Stream[Request] = filter(s1, fun(request) = request.price > 10.0);
val s2: Stream[Item] = flatmap(s2, fun(request) = request.items);
val s3: Stream[Text] = map(s3, fun(item) = item.name);
sink(s3, stdio(), json());

Like dataflow libraries, the dot operator can be used to chain operators to avoid intermediate
variables. Anonymous function syntax can additionally be used to avoid parameter declarations.
Using these abbreviations, the previous example can be rewritten more concisely as:

source::[Request](stdio(), json())
.filter(_.price > 10.0)
.flatmap(_.items)
.map(_.name)
.sink(stdio(), json());

The syntax a.f().g() translates to g(f(a)) and f(\_.id) to f(fun(\_0)= \_0.id).

Algorithm 3 Flatmap Semantics
1: procedure flatmap(𝑟𝑥, 𝑓 )
2: (𝑡𝑥 ′, 𝑟𝑥 ′) ← channel()
3: spawn
4: loop
5: match recv(𝑟𝑥)
6: case data(𝑡, 𝑣)
7: for 𝑣 ← 𝑓 (𝑣)
8: send(𝑡𝑥 ′, data(𝑡, 𝑣 ′))
9: case watermark(𝑡)
10: send(𝑡𝑥 ′,watermark(𝑡))
11: return 𝑟𝑥 ′
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The semantics of flatmap are illustrated in figure ??. Notably the flatmap operator does not
maintain information between processing events and does not rely on timestamps. Operators that
are time-independent transparently forward timestamps and watermarks downstream.

4.1.5 Keyby and Unkey. When writing dataflow applications, it is often desirable to group events
into independent partitions that can be analyzed in parallel. For example, grouping item purchases
by username or location and aggregating their total sum price. The operation for grouping in
Arc-Lang is the keyby operator, which partitions data using a key extractor.

def keyby[K,T](Stream[T], fun(T):K): KeyedStream[K,T];

Grouping results in a KeyedStream supporting operations for aggregating information. Keys can be
erased from streams using the unkey operator.

def unkey[K,T](KeyedStream[K,T]): Stream[T];

An example of using the keyby operator to identify price drops for specific items, with explicit type
signatures to highlight type conversions, can be written as follows:

val s0: Stream[Item] = source(stdio(), csv());
val s1: KeyedStream[Text, Item] = keyby(s0, _.name);
val s2: KeyedStream[Text, Item] = scan(s1, argmin(_.price)); # Defined in next section
val s3: Stream[Item] = unkey(s2);
sink(s3, stdio(), csv());

Algorithm 4 Keyby Semantics
1: procedure keyby(𝑟𝑥, 𝑓 )
2: (𝑡𝑥 ′, 𝑟𝑥 ′) ← channel()
3: spawn
4: loop
5: match recv(𝑟𝑥)
6: case data(𝑡, 𝑣)
7: 𝑘 ← 𝑓 (𝑣)
8: send(𝑡𝑥 ′, kdata(𝑘, 𝑡, 𝑣 ′))
9: case watermark(𝑡)
10: send(𝑡𝑥 ′,watermark(𝑡))
11: return 𝑟𝑥 ′

Algorithm 5 Unkey Semantics
1: procedure unkey(𝑟𝑥, 𝑓 )
2: (𝑡𝑥 ′, 𝑟𝑥 ′) ← channel()
3: spawn
4: loop
5: match recv(𝑟𝑥)
6: case kdata(𝑘, 𝑡, 𝑣)
7: send(𝑡𝑥 ′, data(𝑡, 𝑣 ′))
8: case watermark(𝑡)
9: send(𝑡𝑥 ′,watermark(𝑡))
10: return 𝑟𝑥 ′

11:
The semantics of keyby and unkey are defined in figure ??.

4.1.6 Scan. The scan operator computes and outputs a rolling aggregate over a keyed data stream
using an aggregator and a function for combining the aggregated result into the current event.

def scan[K,I,P,A,O](
KeyedStream[K,I], # Input stream
Aggregator[I,P,A], # Aggregator
fun(A,I): O # Combine aggregate with current event

): KeyedStream[K,O];
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Aggregators are defined using the API proposed by [5]. An aggregator has three functions, a lift
function that maps an input value to a partial aggregate, an associative combine function that
merges two partial aggregates, and a lower function that maps a partial aggregate to an output
value.

def aggregator[I,P,O](fun(I):P, fun(P,P):P, fun(P):O): Aggregator[I,P,O];

# type Aggregator[I,P,O] = { lift:fun(I):P, combine:fun(P,P):P, lower:fun(P):O };

Aggregators such as sum, count, average, and argmin can be defined as:

def sum(f) = aggregator(
fun(x) = f(x),
fun(a, b) = a + b,
fun(x) = x

);

def count() = aggregator(
fun(_) = 1,
fun(a, b) = a + b,
fun(x) = x

);

def min(f) = aggregator(
fun(x) = f(x),
fun(a, b) = if a < b { a } else { b },
fun(x) = x

);

def max(f) = aggregator(
fun(x) = f(x),
fun(a, b) = if a > b { a } else { b },
fun(x) = x

);

def argmin(f) = aggregator(
fun(x) = {data, arg:f(x)},
fun(a, b) = if a.arg < b.arg { a } else { b },
fun(x) = x.data

);

In these examples, sum, min and max take functions as arguments that specify what part of the data to
aggregate. This is useful whenworkingwith events that are represented as records carrying different
data attributes. A question that arises is how to calculate more aggregates that are composed of
other aggregates. For example, the average can be calculated by composing a count and sum.
Composition is made possible by the compose function.

def compose[I,P0,P1,O0,O1,O](
Aggregator[I,P0,O0],
Aggregator[I,P1,O1],
fun(O0, O1): O,

): Aggregator[I,(P0,P1),O];
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Using composition, we can combine aggregators such as sum and count to calculate the average:

def average(f) = compose(sum(f), count(), _/_)

# Equivalent to
def average(f) = aggregator(

fun(x) = {sum:f(x), count:1},
fun(a, b) = {sum: a.sum + b.sum, count: a.count + b.count},
fun(x) = x.sum / x.count,

);

Composition can also be used to simply derive multiple types of aggregates simultaneously.

def min_max_avg(f) =
min(f)

.compose(max(f), (_,_))

.compose(avg(f), (_,_))

# Equivalent to
def average(f) = aggregator(

fun(x) = {sum:f(x), count:1},
fun(a, b) = {sum: a.sum + b.sum, count: a.count + b.count},
fun(x) = x.sum / x.count,

);

The order in which aggregators are composed does not affect their aggregation behaviour. Ad-
ditionally, Arc-Lang provides a builtin set of aggregators which enable fusion optimisations. For
example, sum().compose(count().compose(average())) naively stores two sums and counts, but could
be fused to only store a single sum and count that is shared between the aggregators. Given these
aggregators, scan can be used as follows to compute the rolling revenue, heaviest and lightest items:

source::[Item](stdio(), csv())
.keyby(_.name)
.scan(sum(_.price), {revenue:_|_})
.scan(max(_.mass), {heaviest:_|_})
.scan(min(_.mass), {lightest:_|_})
.unkey()
.sink(stdio(), csv());

Here, \{revenue:\_|\_\} desugars to fun(aggregate, item)= \{revenue:agg|item\} which is a record-
concatenation operation that creates a record containing the fields from item together with a field
with label revenue and value aggregate. The semantics of scan are defined in figure ??.

4.1.7 Apply. In addition to the builtin operators, more specific user-defined operators (UDOs) can
be defined using the apply operator. This operator applies a UDF to a stream that can receive events
from the stream and send events to an output stream. For example, an operator that tracks price
drops of items posted to a store, and resets the price as soon as there is a large price increase (>
10x), can be written as follows:

def track_price_drops(rx, tx, n) {
var min = rx.recv();
tx.send(min);

, Vol. 1, No. 1, Article . Publication date: September 2023.



Arc-Lang Research Report 15

loop {
val current = rx.recv();
if current.price > min.price * 10 or current.price < min.price {

min = current;
tx.send(current);

}
}

}

source::[Item](stdio(), json())
.keyby(_.name)
.apply(track_price_decrease)
.sink(stdio(), json());

While the two previously introduced operators, flatmap and scan, can be defined in terms of apply,
they remain builtin to enable higher-level optimisations. The apply operator can be used in cases
where the expressive power of these builtin operators is not enough. The following code shows
how apply could define flatmap and scan.

def flatmap(rx, tx, f) {
loop {

val element = rx.recv();
for x in f(element) {

tx.send(element);
}

}
}

def scan(rx, tx, agg, f) {
val x = rx.recv();
var s = agg.lift(elem);
tx.send(f(x, agg.lower(s)));
loop {

val x = rx.recv();
s = agg.combine(s, agg.lift(x));
tx.send(f(x, agg.lower(s));

}
}

source::[Request](stdio(), json())
.keyby(_.name)
.apply(flatmap(_, _, fun(request) = request.items))
.apply(scan(_, _, _.price, _+_, {revenue:_|_}))
.sink(stdio(), json());

Arc-Lang does not know the high-level relationship between inputs and outputs of operators
defined using apply, preventing operator fusion. Additionally, while high-level operators could be
translated into different implementations, apply makes the implementation explicit and fixed. The
following sections introduces operators that cannot be defined in terms of apply. Notably, apply
assumes that events can be processed out-of-order. The semantics of apply are illustrated in ??.

4.1.8 Window. Window operators group events into possibly overlapping windows, reducing each
into a value to produce a new data stream. In Arc-Lang, window operators take:
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Fig. 3. Different types of window discretization strategies.

• A discretizer that specifies the method for grouping events into windows. Supported discretizers
are tumbling, sliding and session (time-based), and counting andmoving (count-based). An example
of how these work is illustrated in 3.

def tumbling(length: Duration): Discretizer;
def sliding(length: Duration, step: Duration): Discretizer;
def session(gap: Duration): Discretizer;
def counting(length: U32): Discretizer;
def moving(length: U32, step: U32): Discretizer;

• An aggregator that defines the method for reducing a window into a value, using the same
interface as the one defined in 4.1.6.

Following is an example of how to use windows:

source::[Request](stdio(), csv())
.window(moving(count:5, step:3), argmin(_.price)))
.sink(stdio(), csv());

The syntax 5s translates to s(5). Similar postfix operators can be defined for any numeric literal.
Following is an example of deriving multiple aggregates:

source::[Request](stdio(), csv())
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.window(rolling(count:5, step:3), sum(_.price).compose(count().compose(average(_.price))))

.map(fun((sum, (count, average))) = {sum, count, average})

.sink(stdio(), csv());

Note that output of multiple aggregators is nested and is here un-nested. Events in data streams
may arrive out-of-order with respect to their timestamp. This makes windowing difficult to imple-
ment efficiently since aggregation is often an order-dependent operation. How window operators
are implemented will be discussed in section ??.

4.1.9 Merge. The merge operator combines a vector of streams into a single stream. All streams
being merged must have the same event type.

def merge[T](Vec[Stream[T]]): Stream[T];

The operator can be used as:

val s0: Stream[Request] = source(stdio(), csv());
val s1: Stream[Request] = source(file("requests-1.csv"), csv());
val s2: Stream[Request] = source(file("requests-2.csv"), csv());
val s3: Stream[Request] = merge([s0, s1, s2]);

4.1.10 Fork. The fork operator broadcasts a stream to two streams. It can be used to create separate
analytical pipelines that operate on the same stream.

def fork[T](Stream[T]): (Stream[T], Stream[T]);

The operator can be used as:

val s0: Stream[Request] = source(stdio(), csv());
val (s1: Stream[Request], s2: Stream[Request]) = fork(s0);

val s3 = s1.filter(_.price > 100.0);
val s4 = s2.filter(_.price < 100.0);

The above code could be written more concisely as:

val s0: Stream[Request] = source(stdio(), csv());

val s3 = s0.filter(_.price > 100.0);
val s4 = s0.filter(_.price < 100.0);

Implicitly, fork operations are wherever sharing is observed.

4.2 Relational Subset
In addition to the functional-style syntax, Arc-Lang provides a more concise relational-style queries
for defining dataflow graphs. A query is an expression which manipulates a stream using a sequence
of query operators. While similar to SQL, Arc-Lang’s query syntax reads top-down and respects
lexical scoping. Events are represented as records of arbitrary data. Since Arc-Lang queries are
expressions as opposed to statements, it is possible to abstract a query using a function and assign
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its result to a variable. While SQL-style queries translate to relational algebra, Arc-Lang’s queries
translate to the functional operators introduced in section 4.1. In this section we introduce each
query operator and its translation.

4.2.1 From. Queries begin with the from operator which iterates over a stream. The iteration
variable is visible in the following statements of the query. Queries output all iteration variables
which are in scope. The from translates to the functional map operator. For example:

type Item = {name: Text, price: F64, mass: F64, height: F64, width: F64};

val stream: Stream[Item] =
from item: Item in source(stdio(), csv());

# Translates to
val stream: Stream[Item] =

source(stdio(), csv())
.map(fun(item:Item) = {item});

While the map operator might seem unnecessary, its presence becomes important when there is
pattern matching on the iteration variable:

val stream: Stream[{name:Text, price:F64}] =
from {name, price|_}: Item in source(stdio(), csv());

# Translates to
val stream: Stream[{name:Text, price:F64}] =

source(stdio(), csv())
.map(fun({name, price|_}: Item) = {name, price});

Multiple from operators can be chained to produce a Cartesian product.

type User = {id: U64, name: Text, requests: Vec[Request]};
type Request = {id: U64, items: Vec[Item]};

val stream: Stream[{user:User, request:Request, item:Item}] =
from user: User in source(stdio(), csv())
from request in user.requests
from item in request.items;

# Translates to
val stream: Stream[{user:User, request:Request, item:Item}] =
source(stdio(), csv())
.map(fun(user: User) = {user})
.flatmap(fun(user) = user.requests.map(fun(request) = {user, request})
.flatmap(fun({user, request} = request.items.map(fun(item) = {user, request, item})))

While the initial from statement that starts the query iterates over a stream, successive from
statements iterate over finite-sized data (e.g., arrays). This property is verified by the type system.

4.2.2 Into. The into operator can be used to write the stream produced by a query into a sink. It
translates to the to operator. For example.

from user: User in source(stdio(), csv())
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into sink(stdio(), json());

# Translates to
source(stdio(), csv())

.map(fun(user: User) = {user})

.sink(stdio(), json());

Note that the provided serializers and deserializers automatically unnest records only containing
a single attribute.

4.2.3 Select. The select operator is used to select what output should be produced, replacing the
current iteration variables in scope. This operator directly translates into a functional map.

from item: Item in source(stdio(), csv())
select {item.name, price: item.price.usd()}
into sink(stdio(), json());

# Explicit form
from item: Item in source(stdio(), csv())
select {name: item.name, price: item.price.usd()}
into sink(stdio(), json());

# Translates to
source(stdio(), csv())

.map(fun(item: Item) = {item})

.map(fun({item}) = {item.name, price: item.price.usd()})

.sink(stdio(), json());

4.2.4 With. The with operator assigns intermediate results to variables. Unlike select, with does
not hide any of the variables currently in scope.

from item in source(stdio(), csv())
with area = item.width * item.height
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(item) = {item, area: item.width * item.height})

.sink(stdio(), csv());

4.2.5 Where. The where operator is used to keep events that satisfy a predicate and discard the
rest. This operator directly translates into a functional filter.

from item in source(stdio(), csv())
where item.price > 5.0 and item.mass > 1.0
into sink(stdio(), json());

# Translates to
source(stdio(), csv())

.filter(fun(item) = item.price > 5.0 and item.mass > 1.0)

.sink(stdio(), json());
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4.2.6 Query. The query operator performs a sub-query, piping the current stream into a function
and reading its output back as a stream.

def filter_expensive(s) =
from {item} in s
where item.price > 100;

from item: Item in source(stdio(), csv())
query cleaned in filter_expensive
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(item: Item) = {item})

.filter_expensive()

.map(fun(cleaned) = {cleaned})

.sink(stdio(), json());

4.2.7 Roll. The roll operator derives incremental rolling aggregates from a data stream. It translates
to the scan operator.

from item in source(stdio(), csv())
roll sum of item.price as sum
roll max of item.mass as max
select {item, sum, max}
into sink(stdio(), json());

from item in source(stdio(), csv())
roll sum of item.price
roll max of item.mass
into sink(stdio(), json());

# Translates to
source(stdio(), csv())
.map(fun(item) = {item})
.scan(sum(fun({item})=item.price),fun(revenue,{item})={revenue,item})
.scan(max(fun({item})=item.mass),fun(heaviest,{revenue,item})={heaviest,revenue,item})
.sink(stdio(), json());

4.2.8 Group. The group operator partitions events into distinct groups and performs a query on
each, combining the results into one stream. This operator translates into a composition of the
functional keyby and unkey operators.

from item: Item in source(stdio(), csv())
group item.id {

roll min of item.price as cheapest
}
where item.price == cheapest
into sink(stdio(), json());

# Translates to
source(stdio(), csv())
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.keyby(fun(item) = item.id)

.scan(fun(item) = item.price, sum, fun(revenue, item) = {revenue, item})

.unkey()

.filter(fun({revenue, item}) = revenue > 0.0)

.sink(stdio(), json());

4.2.9 Compute. The compute operator derives a single aggregate from a finite data collection. Like
select, compute introduces new variables and hides any previously defined ones.

val items: Vec[Item] = [
{name:"Pizza", price:100},
{name:"Pizza", price:300},
{name:"Burger", price:200},
{name:"Sushi", price:200}

];

val result: Vec[{revenue:F32, cheapest:F32, priciest:F32}] =
from item: Item in items
compute {

sum of item.price as revenue,
min of item.price as cheapest,
max of item.price as priciest,

};

assert(result == [{revenue:800, cheapest:100, priciest:300]);

# Translates to
val result: Vec[{revenue:F32, cheapest:F32, priciest:F32}] =

items
.map(fun(item: Item) = {item})
.reduce(

sum(_.item.price).compose(
min(_.item.price).compose(
max(_.item.price))));

.map(fun((revenue, (cheapest, priciest))) = {revenue, cheapest, priciest})

4.2.10 Limit. The limit operator returns a number of elements from a finite data collection. It
translates to the take function.

val result: Vec[Item] =
from item: Item in items
limit 10;

# Translates to
val result: Vec[Item] =

items
.map(fun(item: Item) = {item})
.take(10);

4.2.11 Order. The order operator sorts elements of a finite data collection in ascending (by default)
or descending order. It translates to the sort function.
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val result: Vec[Item] =
from item: Item in items
order item.price desc
order item.name;

# Translates to
val result: Vec[Item] =

items
.map(fun(item: Item) = {item})
.sort(fun({item}) = item.price, ascending: false)
.sort(fun({item}) = item.name, ascending: true);

4.2.12 Over. The over operator partitions events into windows and performs a query on each,
reducing it into a single value. Results from multiple windows are combined into one data stream.
This operator translates to the functional window operator.

from item:Item in source(stdio(), json(), ingestion())
over tumbling(length:5s) {

avg of item.price as average,
min of item.price as cheapest,
max of item.price as priciest

}
where average > 10.0
select {average, cheapest, priciest}
into sink(stdio(), json());

# Translates to
source::[Item](stdio(), csv())

.window(
tumbling(length:5s),
avg(_.item.price).compose(

min(_.item.price).compose(
max(_.item.price)

)
)

)
.sink(stdio(), json());

4.2.13 View. The view operator makes the latest value of a stream visible to all downstream
operators.

from item: Item in source(stdio(), csv())
view model: Model in source(file("model.txt"), tensorflow())
val

# Translates to
val result: Vec[Item] =

items
.map(fun(item: Item) = {item})
.sort(fun({item}) = item.price, ascending: false)
.sort(fun({item}) = item.name, ascending: true);
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4.2.14 Join-On. The join-on operator performs an inner-join between a stream and a data collection.
It can naively be translated to a composition of flatmap, map and filter. For example:

val catalogue = [
{id:0, name:"Boat", price:5.0},
{id:1, name:"Bike", price:10.0},
{id:2, name:"Car", price:20.0}

];

from id:U32 in source(stdio(), csv())
join item in catalogue on id == item.id
into sink(stdio(), csv());

# Translates to
source::[Item](stdio(), csv())

.map(fun(id:U32) = id)

.flatmap(fun(id) = catalogue
.map(fun(id) = {item, id})
.filter(fun({item, id}) = item.id == id))

.sink(stdio(), csv());

Note that the predicate given to on must be an equality comparison (id == item.id). If a custom
predicate is desired, then a from-where can be used. For example:

from id:U32 in source(stdio(), csv())
from name in catalogue
where udf(id, item.id)
into sink(stdio(), csv());

4.2.15 Join-Over. The join operator can additionally be used together with the over operator to
join events of two streams that fall into the same window.

val items = source(stdio(), csv());
val users = source(tcp("127.0.0.1", 8080), csv());

from item:Item in items
join user:User in users over tumbling(length:5s) {

compute {
sum of item.price as revenue,
max of item.mass as heaviest,
min of item.mass as lightest

}
}
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(item:Item) = item)

.map(fun(item) = Either::A(item))

.merge(users
.map(fun(user:User) = user)
.map(fun(user) = Either::B(user))

)
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.window(
tumbling(length:5s),
fun(rx) {

val users = rx.left();
val items = rx.right();
rx.reduce(sum(_.price), fun(revenue) = {revenue})

}
)
.sink(stdio(), csv());

4.2.16 Join-Over-On. The join-over operator can be followed by on to also perform an inner join
between the events that fall into the same time window.

from item:Item in items
join user:User in users over tumbling(length:5s) on item.user_id == user.id {

compute {
sum of item.price as revenue

}
}
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(item:Item) = item)

.keyby(fun(item) = item.user_id)

.map(fun(item) = Either::A(item))

.merge(users
.map(fun(user:User) = user)
.keyby(fun(user) = user.id)
.map(fun(user) = Either::B(user))

)
.window(

tumbling(length:5s),
fun(rx) = rx.reduce(sum(_.price), fun(revenue) = {revenue})

)
.sink(stdio(), csv());

4.2.17 Left, Right, Full, and Anti-Join. Joins can be prefixed by left, right, full, and anti to specify
which records should be outputted.
• join: Returns the records from the left input and right input which match on the join condition.

from id:U32 in source(stdio(), csv())
join item in items

on id == item.id
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(id:U32) = id)

.flatmap(fun(id) = items
.filter(fun(item) = id == item.id)
.map(fun(item) = {id, item}))

.sink(stdio(), csv());
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• left join: Returns all the records from the left input, and optionally the records from the right
input if there is a match.

from id:U32 in source(stdio(), csv())
left join item in items

on id == item.id
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(id:U32) = id)

.flatmap(fun(id) = items
.map(fun(item) = if id == item.id {

{id, item: Some(item)}
} else {

{id, item: None}
}))

.sink(stdio(), csv());

• right join: Returns all the records from the right input, and optionally the records from the left
input if there is a match.

from id:U32 in source(stdio(), csv())
right join item in items

on id == item.id
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(id:U32) = id)

.flatmap(fun(id) = items
.map(fun(item) = if id == item.id {

{id: Some(id), item}
} else {

{id: None, item}
}))

.sink(stdio(), csv());

• full join: Returns the union of what would be produced by a left join and a right join.

from id:U32 in source(stdio(), csv())
full join item in items

on id == item.id
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(id:U32) = id)

.flatmap(fun(id) = items
.flatmap(fun(item) = if id == item.id {

[{id:Some(id), item:Some(item)}]
} else {
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[{id:Some(id), item:None}, {id:None, item:Some(item)}]
}))

.sink(stdio(), csv());

• anti join: Returns records from either input for which there are no matching records in the
opposite input.

from id:U32 in source(stdio(), csv())
anti join item in items

on id == item.id
into sink(stdio(), csv());

# Translates to
source(stdio(), csv())

.map(fun(id:U32) = id)

.flatmap(fun(id) = items
.filter(fun(item) = not (id == item.id))
.flatmap(fun(item) = [{id:Some(id), item:None}, {id:None, item:Some(item)}]))

.sink(stdio(), csv());

These translations are naive and could be further optimised by replacing flatmap with more special-
ized operators. Note that, unlike SQL, where optionality is represented by NULL, Arc-Lang represents
optionality using the Option type. This is necessary for error handling.

4.2.18 Union. The union operator unions two streams into one. It translates to the functional merge
operator.

from item:Item in source(file("items-1.txt"), csv())
union source(file("items-2.txt"), csv())
into sink(stdio(), csv());

# Translates to
source(file("items-1.txt"), csv())

.map(fun(item:Item) = item)

.merge(source(file("items-2.txt"), csv()))

.sink(stdio(), csv());

4.2.19 Union. The union operator unions two streams into one. It translates to the functional merge
operator.

from item:Item in source(file("items-1.txt"), csv())
union source(file("items-2.txt"), csv())
into sink(stdio(), csv());

# Translates to
source(file("items-1.txt"), csv())

.map(fun(item:Item) = item)

.merge(source(file("items-2.txt"), csv()))

.sink(stdio(), csv());
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4.3 Sequential Subset

P ::= s1 · · · sn program

s ::= statements:
| val p = e; immutable variable
| var p = e; mutable variable
| def x(p1,· · ·,pn) = e; function
| type x = t; type alias
| enum x { C1(t1),· · ·,Cn(tn) } enum

v ::= values:
| x variable
| C(v) variant
| {x1:v1,· · ·,xn:vn} record
| [v1,· · ·,vn] array
| fun(p1,· · ·,pn) = e function
| c constant

p ::= patterns:
| x variable
| {x1:p1,· · ·,xn:pn} record
| [p1,·,pn] array
| C(p) variant
| c constant
| p:t annotation
| _ wildcard

e ::= expressions:
| v value
| e:t annotation
| match e { p1=>e1,· · ·,pn=>en } conditional
| loop b loop
| break | continue | return e control-flow
| do b block
| {x1:t1,· · ·,xn:tn} | e.x | {x:e|e} record
| C(e) variant
| [e1,· · ·,en] | e[e] array
| e(e1,· · ·,en) call
| a = e mutation

a ::= x | a[e] | a.x place expressions

b ::= { s1 · · · sn e } block

t ::= types:
| x variable
| {x1:t1,· · ·,xn:tn} record
| [t;N] array
| fun(t1,· · ·,tn):t function
| () unit
| _ wildcard

c ::= constants:
| () unit
| B | Z | R | C | S literals

Fig. 4. Abstract syntax of Arc-Lang.

Arc-Lang’s sequential subset provides features for imperative and functional programming that
can be used to build programs that construct dataflow graphs as well as define UDFs and UDTs.
The syntax is defined in figure 4 using a BNF notation. The terminals x, T, C are meta variables
for different categories of identifiers. This section progressively introduces the syntax alongside
syntactic abstractions that make it more convenient to use.

4.3.1 Statements. An Arc-Lang program is a list of statements which evaluate in sequential order.
A statement either defines a variable, function, or type. These definitions are lexically scoped,
meaning they can be referred to by later statements inside their surrounding scope.

4.3.2 Variable Definition. The val and var statements evaluate an expression and assigns its result
to immutable or mutable variables respectively using pattern matching ??. For example:

val x = 1; # Immutable
var y = 2; # Mutable
x = 1; # Error
y = 3; # OK
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Arc-Lang offers exterior mutability, meaning the only way to mutate data is by re-assigning
mutable variables. Expressions that can occur as the left operand of an assignment expression
are referred to as place-expressions. A place-expression represents a memory location, which
could be a mutable variable, record field ?? or array index ??. While mutable variables add more
expressiveness, they have no impact on the efficiency of program execution. The purpose of the
distinction between mutable and immutable variables is to make programs easier to reason about
for users. When a user sees an immutable variable, they can safely assume it will not be reassigned
in later statements.

Syntactic extensions

s ::= · · · expressions:
| e; expression

Desugaring rules

e;
:= val _ = e;

Fig. 5. Expression statements

4.3.3 Expression Statements. Expression statements evaluate an expression, potentially producing
side effects, and throws the result away. This statement is equivalent to a variable definition
statement that binds the right hand side to a wildcard pattern 5. Expression statements are useful
when the evaluated expression only produces effects. For example:

print("Hello world");

4.3.4 Functions. Functions are defined using the def keyword. A function takes one or multiple
arguments, destructures them into variables using pattern matching, and evaluates an expression.
The result of the expression is then returned by the function. A function for computing the greatest
common divisor of an integer can for example be written as:

def gcd(a, b) = match b {
0 => abs(a),
n => gcd(a, a % n)

}

Arguments are passed to functions by-value, meaning they are copied as opposed to being passed
by-reference. The purpose is to make programs easier to reason about. Statements within a function
cannot reassign variables outside of the function. Passing by-value is known to be inefficient for
large data. An implementation of Arc-Lang can avoid excessive copying in multiple ways. For
immutable data (e.g., immutable strings), it is possible to pass a shallow copy that is shared through
reference counting. For mutable data (e.g., vectors), it is possible to pass data directly without
copying it when it only has a single reference.
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Syntactic extensions
e ::= · · · expressions:

| e.xf(e1,· · ·,en) method call

Desugaring rules
e.xf(e1,· · ·,en)

:= xf(e,e1,· · ·,en)

Table 2. Syntactic abstractions for methods. Methods are regular functions, where the first argument to the
function is passed through dot-chaining syntax.

Syntactic extensions
s ::= · · · statements:

| def xf(p1,· · ·,pn) b procedure

e ::= · · · expressions:
| fun(p1,· · ·,pn) b procedure

b ::= . . . blocks
| { s } procedure block

Desugaring rules

def xf(p1,· · ·,pn) b

:= def xf(p1,· · ·,pn) = do b

fun(p1,· · ·,pn) b
:= fun(p1,· · ·,pn) = do b

{ s }
:= { s () }

Fig. 6. Syntactic abstractions for procedures. Procedures are functions that evaluate a block of statements,
potentially producing side effects.

A procedure is a function that evaluates a block instead of an expression, possibly producing
side effects. Figure ?? illustrates a set of syntactic abstractions for defining functions as procedures,
and show how these translate into the surface syntax. Procedure syntax is useful for imperative
programming, which involves mutation and loops. For example, the above code can be written
imperatively as follows:

def gcd(a, b) {
var x = a;
var y = b;
while y != 0 {

val temp = y;
y = x % y;
x = temp;

}
abs(x)

}

4.3.5 Methods. Arc-Lang does not make a distinction between methods and functions. As illus-
trated in ??, functions can be called as if they were methods using dot syntax. For example.

val n = 123;
val g0 = gcd(n); # Function call syntax
val g1 = n.gcd(); # Method call syntax

4.3.6 Builtins. Arc-Lang programs are structured around a closed set of builtin data types and
functions that are expected in the domain of continuous analytics. This section gives a brief
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Syntactic extensions
A - associativity, P - precedence

e ::= · · · expressions:
| not e logic negation (P=1)
| -e arithmetic negation (P=1)
| e * e multiplication (A=left, P=2)
| e / e division (A=left, P=2)
| e + e addition (A=left, P=3)
| e - e subtraction (A=left, P=3)
| e < e less than (A=left, P=4)
| e > e greater than (A=left, P=4)
| e <= e less than or equal (A=left, P=4)
| e >= e greater than or equal (A=left, P=4)
| e == e equal (A=left, P=5)
| e != e not equal (A=left, P=5)
| e and e conjunction (A=left, P=6)
| e or e disjunction (A=left, P=6)

Desugaring rules

not e := _not_(e)
-e := _neg_(e)

e1 * e2 := _mul_(e1,e2)
e1 / e2 := _div_(e1,e2)
e1 + e2 := _add_(e1,e2)
e1 - e2 := _sub_(e1,e2)
e1 < e2 := _lt_(e1,e2)
e1 > e2 := _gt_(e1,e2)
e1 <= e2 := _leq_(e1,e2)
e1 >= e2 := _geq_(e1,e2)
e1 == e2 := _eq_(e1,e2)
e1 != e2 := _neq_(e1,e2)
e1 and e2 := _and_(e1,e2)
e1 or e2 := _or_(e1,e2)

introduction to the main builtin data types using examples. We refer to the documentation for a
complete specification of all builtins.
Unit is a type that can only have one value. The unit value carries no information, indicating

that no value of interest was produced.

():();
print("Hello"):();

Booleans can be either true or false. Their supported operations are not, and, and or operators.
Booleans additionally play a role in

true:bool;
false:bool;
(true and false or true):bool;

Numeric types encompass signed integers, unsigned integers, and floats. These come in both
fixed-size format (e.g., i32 and f64) and dynamic-size format (e.g., Int and Float).

12345:i32; # Also i8, i16, i64, i128
12345:u32; # Also u8, u16, u64, u128
123.0:f64; # Also f32

12345:Int;
123.0:Float;

(1*2+3/4-5):i32;

Characters and strings are used for representing textual data.

val _: char = 'c';
val _: String = "Hello";
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Characters are encoded as UTF-8, meaning a character is represented by up to four bytes. This
allows representing both byte strings as well as unicode characters. A consequence of using a
variable-length encoding is that random access (e.g., character indexing) is not a constant-time
operation.

Arrays represent statically-sized sequences of homogeneous data. Operations on arrays are inter-
nally performed in-place on contiguous sequences of bytes, allowing efficient indexing, mutation,
and iteration.

val x: [i32;3] = [1,2,3];
val y = x[0];
x[0] = 1;
for z in x { print(z); }

Options
Vectors represent dynamically-sized sequences of homogeneous data. Like arrays, their operations

are performed in-place.

var x: [i32;3] = vec([1,2,3]);
val y = x[0];
x[0] = 1;
for z in x { print(z); }

val _: () = x.push(1);
val _: Option[i32] = x.pop();

Records represent sets of heterogeneous data.

val _: {a:i32, b:i32} = {a:1, b:2};
val x: {a:i32, b:Text} = {a:1, b:"Hello"};
val _: i32 = x.a;

Tuples represent statically-sized sequences of heterogeneous data.

val _: (i32, i32) = (1, 2);
val x: (i32, String) = (1, "Hello");
val _: String = x.1;

Time and Duration

val _: Time = 2020-01-01T00:00;
val _: Duration = 5s;

4.3.7 User-Defined Data Types. Arc-Lang offers two ways of composing builtin data types into
user-defined data types.

Enums (short for enumerated unions) represent data that could be one out of multiple variants.

enum Shape[T] { Rectangle(f32, f32), Circle(f32) }

val _: Shape[f32] = Rectangle(1.0, 2.0);
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val _: Shape[f32] = Circle(3.0);

def area(s) = match s {
Rectangle(w, h) => w * h,
Circle(r) => r * 3.14,

}

4.3.8 Type Aliases. Type aliases can be defined using the type keyword. Type aliases are substituted
for their right hand side when used in the code. A type alias cannot be self-referential, and may
only refer to previously defined types.

type User = {name: String, age: i32};

val _: User = {name: "Bob", age: 20};
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